Skip to main content

Melt Flow and Grain Refinement in Al-Si Alloys Solidified under the Influence of Applied Electric Currents

  • Conference paper
TMS 2015 144th Annual Meeting & Exhibition
  • 3806 Accesses

Abstract

The solidification of Al-7wt.% Si alloys under the influence of electric current pulses (ECP) through two parallel electrodes at the melt surface is investigated. An effective grain refinement was found if the ECP is applied during the initial solidification period (nucleation and recalescence). The grain size can be gradually reduced, which is likely due to the remelting process of high-order dendrite arms in the mushy zone driven by solute fluctuation and promoted by thermal fluctuation. This fragmentation process is mainly driven by electromagnetically forced convection. The grain refinement does not require the formation of nuclei from a solidified shell near the electrodes, which would result in a grain rain inside the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grässel O, KrĂ¼ger L, Frommeyer G, Meyer LW. Int J Plasticity 2000; 16:1391.

    Article  Google Scholar 

  2. Miller WS, Zhuang L, Bottema J, Wittebrood AJ, De Smet P, Haszler A, et. al. Mater Sci Eng, 2000; 280:37.

    Article  Google Scholar 

  3. Mordike BL, Ebert T. Mater Sci Eng A 2001; 302:37.

    Article  Google Scholar 

  4. Williams JC, Starke Jr EA. Acta Mater 2003; 51:5775.

    Article  Google Scholar 

  5. Murty BS, Kori SA, Chakraborty M. Int Mater Rev 2002; 47:3.

    Article  Google Scholar 

  6. Seidman DN, Marquis EA, Dunand DC. Acta Mater 2002; 50:4021.

    Article  Google Scholar 

  7. Gong J, Wilkinson AJ. Acta Mater 2011; 59:5970.

    Article  Google Scholar 

  8. Maxwell I, Hellawell A. Acta metall 1975; 23:229.

    Article  Google Scholar 

  9. Easton M, St John D. Metall Mater Trans A 1999; 30:1613 and 1625.

    Article  Google Scholar 

  10. Greer AL, Bunn AM, Tronche A, Evans PV, Bristow DJ. Acta Mater 2000; 48:2823.

    Article  Google Scholar 

  11. Easton MA, St John DH. Acta Mater 2001; 49:1867.

    Article  Google Scholar 

  12. Qian M, Cao P, Easton MA, McDonald SD, St John DH. Acta Mater 2010; 58:3262.

    Article  Google Scholar 

  13. Shu D, Sun BD, Mi J, Grant PS. Acta Mater 2011; 59:2135.

    Article  Google Scholar 

  14. St John DH, Qian M, Easton MA, Cao P. Acta Mater 2011; 59:4907.

    Article  Google Scholar 

  15. Abramov V, Abramov O, Bulgakov V, Sommer F. Mater Lett 1998; 37:27.

    Article  Google Scholar 

  16. Jian X, Xu H, Meek TT, Han Q. Mater Lett 2005; 59:190

    Article  Google Scholar 

  17. Jian X, Meek TT, Han Q. Scripta Mater 2006; 54:893.

    Article  Google Scholar 

  18. Ramirez A, Ma Q, Davis B, Wilks T, St John DH. Scripta Mater 2008; 59:19.

    Article  Google Scholar 

  19. Liu XB, Osawa Y, Takamori S, Mukai T. Mater Lett 2008; 62:2872.

    Article  Google Scholar 

  20. Gao DM, Li ZJ, Han QY, Zhai QJ. Mater Sci Eng A 2009; 502:2.

    Article  Google Scholar 

  21. Vives C. Mater Sci Eng A 1993; 173:169.

    Article  Google Scholar 

  22. Vives C. Metall Mater Trans B 1996; 27:445 and 457.

    Article  Google Scholar 

  23. Li MJ, Tamura T, Miwa K. Acta Mater 2007; 55:4635.

    Article  Google Scholar 

  24. Griffiths WD, McCartney DG. Mater Sci Eng A 1996; 216:47.

    Article  Google Scholar 

  25. Willers B, Eckert S, Michel U, Haase I, Zouhar G. Mater Sci Eng A 2005; 402:55.

    Article  Google Scholar 

  26. Eckert S, Willers B, Nikrityuk PA, Eckert K, Michel U, Zouhar G. Mater Sci Eng A 2005; 413–414:211.

    Article  Google Scholar 

  27. Eckert S, Nikrityuk PA, Räbiger D, Eckert K, Gerbeth G. Metall Mater Trans B 2007; 38:977.

    Article  Google Scholar 

  28. Willers B, Eckert S, Nikrityuk PA, Räbiger D, Dong J, Eckert K, Gerbeth G. Metall Mater Trans B 2008; 39:304.

    Article  Google Scholar 

  29. Metan V, Eigenfeld K, Räbiger D, Eckert S. J Alloy Compnds 2009; 487:163.

    Article  Google Scholar 

  30. Vashchenko KI, Chernega D, Vorob’ev S, Lysenko N, Yakovchuk YU. Metallovedeni Thermich Obra Metallov 1974; 3:62.

    Google Scholar 

  31. Conrad H. Mater Sci Eng A, 2000; 287:205.

    Article  Google Scholar 

  32. Misra AK. Metall Trans A 1985; 16A:1354.

    Article  Google Scholar 

  33. Misra AK. Metall Trans A 1986; 17A:358.

    Article  Google Scholar 

  34. Nakada M, Shiohara Y, Flemings MC. ISIJ Int 1990; 30:27.

    Article  Google Scholar 

  35. Barnak JP, Sprecher AF, Conrad H. Scr Metall Mater 1995; 32:879.

    Article  Google Scholar 

  36. Liao XL, Zhai QJ, Luo J, Chen WJ, Gong YY. Acta Mater 2007; 55: 3103.

    Article  Google Scholar 

  37. Li J, Ma JH, Gao YL, Zhai QJ. Mater Sci Eng A 2008; 490:452.

    Article  Google Scholar 

  38. Ma JH, Li J, Gao YL, Zhai QJ. Mater Lett 2009; 63:142.

    Article  Google Scholar 

  39. Cui H, Zong YB, Cang DQ, Li LZ, Zhang J. J Univ Sci Technol Beijing 2007; 14:317.

    Article  Google Scholar 

  40. Zhao ZL, Wang JL, Liu L. Mater Manuf Process, 2011; 26:249.

    Article  Google Scholar 

  41. Yin ZX, Liang D, Chen YE, Cheng YF, Zhai QJ. T Nonferr Metal Soc 2013; 23:92.

    Article  Google Scholar 

  42. He SX, Wang J, Jiang W, Sun BD, Zhou YH. T Nonferr Metal Soc 2003; 13:126.

    Google Scholar 

  43. Ban CY, Han Y, Ba QX, Cui JZ. Mater Sci Forum 2007; 546–549:723.

    Article  Google Scholar 

  44. Gao M, He GH, Yang F, Guo JD, Yuan ZX, Zhou BL. Mater Sci Eng A 2002; 337:110.

    Article  Google Scholar 

  45. Räbiger D, Zhang YH, Galindo V, Franke S, Willers B, Eckert S. Acta Mater 2014; 79:327.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Zhang, Y.H., Räbiger, D., Eckert, S. (2015). Melt Flow and Grain Refinement in Al-Si Alloys Solidified under the Influence of Applied Electric Currents. In: TMS 2015 144th Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48127-2_5

Download citation

Publish with us

Policies and ethics