Skip to main content

Microstructural and Reliability Issues of TSV

  • Chapter
  • First Online:
3D Microelectronic Packaging

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 57))

Abstract

The copper pumping problem exemplifies the complex reliability issues still to be resolved for TSV structures. From a materials science perspective the reliability issues presented by TSVs are linked to manufacturing processes and the resultant microstructure formed. Routine finite element-based reliability studies that treat the TSV filler as an isotropic and homogeneous material are not capable of providing a sufficiently thorough explanation of the observed copper extrusion/intrusion behavior. Rather, the material behavior and properties at multiple scales are required as the input data for effective reliability analysis of three-dimensional TSV stacked ICs. Such 3-D ICs also push the scale of materials to a limit where the anisotropy of material properties, recovery, recrystallization, and time-dependent phase morphological evolution further complicate reliability issues. This chapter reviews both experimental and modeling approaches that address the microstructural and reliability issues of TSVs. Crystal plasticity-based finite element method and phase field crystal method with an inherently multiscale nature are identified as promising modeling techniques to enable atomistically informed reliability analysis of TSVs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It should be noted that the exact value of the stress for a wavenumber shift may depend on the materials properties used in secular equation (i.e., set of equations in the reference axes which may be different than that of materials crystallographic reference system). It can lie in the range of 430–520 MPa [17].

References

  1. K. Athikulwongse, A. Chakraborty, J.-S. Yang, D.Z. Pan, S.K. Lim, Stress-driven 3D-IC placement with TSV keep-out zone and regularity study, in: International Conference on Computer-Aided Design (ICCAD), San Jose, CA, Nov 2010 (IEEE/ACM, 2010), p. 669

    Google Scholar 

  2. P. Bayat, D. Vogel, R.D. Rodriguez, E. Sheremet, D.R.T. Zahn, S. Rzepka, B. Michel, Thermo-mechanical characterization of copper through-silicon vias (Cu-TSVs) using micro-Raman spectroscopy and atomic force microscopy. Microelectron Eng. 137, 101–104 (2015)

    Article  Google Scholar 

  3. R. Becker, J.F. Butler, H. Hu, L.A. Lalli, Analysis of an aluminum single crystal with unstable initial orientation (0 0 1) [1 1 0] in channel die compression. Metall. Trans. A 22, 45–48 (1991)

    Google Scholar 

  4. J. Berry, N. Provatas, J. Rottler, C.W. Sinclair, Defect stability in phase-field crystal models: stacking faults and partial dislocations. Phys. Rev. B 86, 224112 (2012)

    Article  Google Scholar 

  5. J. Berry, N. Provatas, J. Rottler, C.W. Sinclair, Phase field crystal modeling as a unified atomistic approach to defect dynamics. Phys. Rev. B 89, 214117 (2014)

    Article  Google Scholar 

  6. J. Berry, J. Rottler, C.W. Sinclair, N. Provatas, Atomistic study of diffusion-mediated plasticity and creep using phase field crystal methods. Phys. Rev. B 92, 134103 (2015)

    Article  Google Scholar 

  7. A.S. Budiman, H.-A.-S. Shin, B.-J. Kim, B.-J. Kim, S.-H. Hwang, H.-Y. Son, M.-S. Suh, Q.-H. Chung, K.-Y. Byun, N. Tamura, M. Kunz, Y.-C. Joo, Measurement of stresses in Cu and Si around through-silicon via by synchrotron X-ray microdiffraction for 3-dimensional integrated circuits. Microelectron Reliab. 52, 530–533 (2012)

    Article  Google Scholar 

  8. H.J. Bunge, R.A. Schwarzer, Orientation stereology—a new branch in texture research. Adv. Eng. Mater. 3, 25–39 (2001)

    Article  Google Scholar 

  9. H.J. Bunge, Texture Analysis in Materials Science—Mathematical Methods (Butterworth & Co, London, 1982)

    Google Scholar 

  10. D. Cereceda, M. Diehl, F. Roters, D. Raabe, J.M. Perlado, J. Marian, Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations. Int. J. Plasticity 78, 242–265 (2016)

    Article  Google Scholar 

  11. L.Q. Chen, Phase-field models for microstructure evolution. Ann. Rev. Mater. Res. 32, 113–140 (2002)

    Article  Google Scholar 

  12. E.J. Cheng, Y.L. Shen, Thermal expansion behavior of through-silicon-via structures in three-dimensional microelectronic packaging. Microelectron Reliab. 52, 534–540 (2012)

    Article  Google Scholar 

  13. H.-J. Choi, S.-M. Choi, M.-S. Yeo, S.-D. Cho, D.-C. Baek, J. Park, An experimental study on the TSV reliability: electromigration (EM) and time dependant dielectric breakdown (TDDB). in: IITC: IEEE International Interconnect Technology Conference, San Jose, CA, June 2012 (2012)

    Google Scholar 

  14. J. De Messemaeker, O.V. Pereira, B. Vandevelde, H. Philipsen, I. De Wolf, E. Beyne, K. Croes, Impact of post-plating anneal and through-silicon via dimensions on Cu pumping, in: Electronic Components & Technology Conference (IEEE, 2013), p. 586

    Google Scholar 

  15. J. De Messemaeker, O.V. Pereira, H. Philipsen, E. Beyne, I. De Wolf, T. Van der Donck, K. Croes, Correlation between Cu microstructure and TSV Cu pumping, in: Electronic Components & Technology Conference (IEEE, 2014), Piscataway, New Jersey, US. p. 613

    Google Scholar 

  16. I. De Wolf, K. Croes, O. Varela Pedreira, R. Labie, A. Redolfi, M. Van De Peer, K. Vanstreels, C. Okoro, B. Vandevelde, E. Beyne, Cu pumping in TSVs: effect of pre-CMP thermal budget. Microelectron Reliab. 51, 1856–1859 (2011)

    Article  Google Scholar 

  17. I. De Wolf, V. Simons, V. Cherman, R. Labie, B. Vandevelde, E. Beyne, In-depth Raman spectroscopy analysis of various parameters affecting the mechanical stress near the surface and bulk of Cu-TSVs, in: Electronic Components & Technology Conference (IEEE, 2012), p. 331

    Google Scholar 

  18. I. Dutta, P. Kumar, M.S. Bakir, Interface-related reliability challenges in 3-D interconnect systems with through-silicon vias. JOM 63:70–77 (2011)

    Article  Google Scholar 

  19. K.E. Elder, M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70, 051605 (2004)

    Article  Google Scholar 

  20. K.R. Elder, M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70, 051605 (2004)

    Article  Google Scholar 

  21. K.R. Elder, M. Katakowski, M. Haataja, M. Grant, Modeling elasticity in crystal growth. Phys. Rev. Lett. 88, 245701 (2002)

    Article  Google Scholar 

  22. K.R. Elder, N. Provatas, J. Berry, P. Stefanovic, M. Grant, Phase-field crystal modeling and classical density functional theory of freezing. Phys. Rev. B 75, 064107 (2007)

    Article  Google Scholar 

  23. M. Faheem, R.R. Giridharan, Y. Liang, P. van Der Heide, Micro-XRD characterization of a single copper filled through-silicon via. Mater. Lett. 161, 391–394 (2015)

    Article  Google Scholar 

  24. X. Feng, T. Huang, M. Li, The influence of annealing on characteristics of copper in TSV. ECS J. Solid State Sci. Technol. 4, P451–P455 (2015)

    Article  Google Scholar 

  25. T. Frank, S. Moreau, C. Chappaz, L. Arnaud, P. Leduc, A. Thuaire, L. Anghel, Electromigration behavior of 3D-IC TSV interconnects, in: Electronic Components & Technology Conference (IEEE, 2012), p. 326

    Google Scholar 

  26. T. Frank, S. Moreau, C. Chappaz, P. Leduc, L. Arnaud, A. Thuaire, E. Chery, F. Lorut, L. Anghel, G. Poupon, Reliability of TSV interconnects: electromigration, thermal cycling, and impact on above metal level dielectric. Microelectron Reliab. 53, 17–29 (2013)

    Article  Google Scholar 

  27. K.J. Ganesh, A.D. Darbal, S. Rajasekhara, G.S. Rohrer, K. Barmak, P.J. Ferreira, Effect of downscaling nano-copper interconnects on the microstructure revealed by high resolution TEM-orientation-mapping. Nanotechnology 23, 135702 (2012)

    Article  Google Scholar 

  28. L. Granasy, F. Podmaniczky, G.I. Toth, G. Tegze, T. Pusztai, Heterogeneous nucleation of/on nanoparticles: a density functional study using the phase-field crystal model. Chem. Soc. Rev. 43, 2159–2173 (2014)

    Article  Google Scholar 

  29. M. Greenwood, N. Provatas, J. Rottler, Free energy functionals for efficient phase field crystal modeling of structural phase transformations. Phys. Rev. Lett. 105, 045702 (2010)

    Article  Google Scholar 

  30. M. Greenwood, N. Ofori-Opoku, J. Rottler, N. Provatas, Modeling structural transformations in binary alloys with phase field crystals. Phys. Rev. B 84, 064104 (2011)

    Article  Google Scholar 

  31. J.M.E. Harper, C. Cabral Jr., P.C. Andricacos, L. Gignac, I.C. Noyan, K.P. Rodbell, C.K. Hu, Mechanisms for microstructure evolution in electroplated copper thin films near room temperature. J. Appl. Phys. 86, 2516–2525 (1999)

    Article  Google Scholar 

  32. S.V. Harren, R.J. Asaro, Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model. J. Mech. Phys. Solids 37, 191–232 (1989)

    Article  MATH  Google Scholar 

  33. S.V. Harren, H.E. Deve, R.J. Asaro, Shear band formation in plane strain compression. Acta Metall 36, 2435–2480 (1988)

    Article  Google Scholar 

  34. A. Heryanto, W.N. Putra, A. Trigg, S. Gao, W.S. Kwon, F.X. Che, X.F. Ang, J. Wei, R.I. Made, C.L. Gan, K.L. Pey, Effect of copper TSV annealing on via protrusion for TSV Wafer Fabrication. J. Electron Mater. 41, 2533–2542 (2012)

    Article  Google Scholar 

  35. P.S. Ho, S.K. Ryu, K.H. Lu, Q. Zhao, J. Im, R. Huang, Reliability challenges for 3D interconnects: A material and design perspective. Presentation at the 3D Sematech Workshop, Burlingame, 17 March 2011 (2011)

    Google Scholar 

  36. T. Hrncir, J. Dluhos, L. Hladik, E. Moyal, Advances in FIB-SEM analysis of TSV and solder bumps—approaching higher precision, throughput and comprehensiveness, in: ISTFA 2014: Proceedings of the 40th International Symposium for Testing and Failure Analysis, Houston, TX, November 2014 (2014)

    Google Scholar 

  37. S.-H. Hwang, B.-J. Kim, H.-Y. Lee, Y.-C. Joo, Electrical and mechanical properties of through-silicon vias and bonding layers in stacked wafers for 3D integrated circuits. J. Electron Mater. 41, 232–240 (2012)

    Article  Google Scholar 

  38. T. Jiang, S.-K. Ryu, Q. Zhao, J. Im, R. Huang, P.S. Ho, Measurement and analysis of thermal stresses in 3D integrated structures containing through-silicon-vias. Microelectron Reliab. 53, 53–62 (2013)

    Article  Google Scholar 

  39. T. Jiang, S.K. Ryu, J. Im, H.-Y. Son, N.-S. Kim, R. Huang, P.S. Ho, Impact of material and microstructure on thermal stresses and reliability of through-silicon via (TSV) structures, in: IITC: IEEE International Interconnect Technology Conference, Kyoto, June 2013 (2013)

    Google Scholar 

  40. T. Jiang, C. Wu, J. Im, R. Huang, P.S. Ho, Effect of microstructure on via extrusion profile and reliability implication for copper through-silicon vias (TSVs) structures, in: IITC/AMC: International Interconnect Technology Conference/Advanced Metallization Conference, San Jose, CA, May 2014 (IEEE, 2014), p. 377

    Google Scholar 

  41. S.R. Kalidindi, Incorporation of deformation twinning in crystal plasticity models. J. Mech. Phys. Solids 46, 267–290 (1998)

    Article  MATH  Google Scholar 

  42. S.R. Kalidindi, M. De Graef, Materials data science: current status and future outlook. Annu. Rev. Mater. Res. 45, 171–193 (2015)

    Article  Google Scholar 

  43. L.W. Kong, J.R. LIoyd, K.B. Yeap, E. Zschech, A. Rudack, M. Liehr, A. Diebold, Applying X-ray microscopy and finite element modeling to identify the mechanism of stress-assisted void growth in through-silicon vias. J. Appl. Phys. 110, 053502 (2011)

    Article  Google Scholar 

  44. Krause, M., et al., Characterization and failure analysis of TSV interconnects: from non-destructive defect localization to material analysis with nanometer resolution, in: Electronic Components & Technology Conference (IEEE, 2011), p. 1452

    Google Scholar 

  45. P. Kumar, I. Dutta, Influence of electric current on diffusionally accommodated sliding at hetero-interfaces. Acta Mater 59, 2096–2108 (2011)

    Article  Google Scholar 

  46. P. Kumar, I. Dutta, Effect of substrate surface on electromigration-induced sliding at hetero-interfaces. J. Phys. D 46, 155303 (2013)

    Article  Google Scholar 

  47. P. Kumar, I. Dutta, M.S. Bakir, Interfacial effects during thermal cycling of Cu-filled through-silicon vias (TSV). J. Electron Mater. 41, 322–335 (2012)

    Article  Google Scholar 

  48. L.E. Levine, C. Okoro, R. Xu Full elastic strain and stress tensor measurements from individual dislocation cells in copper through-Si vias. IUCrJ 2, 635–642 (2015)

    Google Scholar 

  49. X. Liu, Q. Chen, V. Sundaram, M. Simmons-Matthews, K.P. Wachtler, R.R. Tummla, S.K. Sitaraman, Thermo-mechanical behavior of through silicon vias in a 3D integrated package with inter-chip microbumps, in: Electronic Components & Technology Conference (IEEE, 2011), p. 1190

    Google Scholar 

  50. K.H. Lu, S.-K. Ryu, Q. Zhao, K. Hummler, J. Im, R. Huang, P.S. Ho, Temperature-dependent thermal stress determination for through-silicon-vias (TSVs) by combining bending beam technique with finite element analysis, in: Electronic Components & Technology Conference (IEEE, 2011), p. 1475

    Google Scholar 

  51. L.B. Mauer, J. Taddei, R. Yousself, Wet silicon etch process for TSV reveal, in: Electronic Components & Technology Conference (IEEE, 2014), Piscataway, New Jersey, US. p. 878

    Google Scholar 

  52. C. McDonough, B. Backes, W. Wang, R. Caramto, R.E. Gree, Thermal and spatial dependence of TSV-induced stress in Si, in: Interconnect Technology Conference and 2011 Materials for Advanced Metallization (IITC/MAM), Dresden, May 2011 (2011)

    Google Scholar 

  53. L. Meinshausen, M. Liu, T.K. Lee, I. Dutta, L. Li, Reliability implications of thermo-mechanically and electrically induced interfacial sliding of through-silicon vias in 3D packages, in: ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, San Francisco, CA, July 2015 (2015)

    Google Scholar 

  54. H.D. Merchant, Thermal response of electrodeposited copper. J. Electron Mater. 24, 919–925 (1995)

    Article  Google Scholar 

  55. N. Nabiollahi, N. Moelans, M. Gonzalez, J. De Messemaeker, C.J. Wilson, K. Croes, E. Beyne, I. De Wolf (2015) Microstructure simulation of grain growth in Cu through silicon vias using phase-field modeling. Microelectron Reliab. 55, 765–770

    Article  Google Scholar 

  56. National Science and Technology Council, Materials genome initiative for global competitiveness. National Science and Technology Council, Washington, DC (2011), http://www.mgi.gov. Accessed 21 June 2016

  57. W.D.Nix, J.R. Greer, G. Feng, E.T. Lilleodden, Deformation at the nanometer and micrometer length scales: effects of strain gradients and dislocation starvation. Thin Solid Films 515, 3152–3157 (2007)

    Google Scholar 

  58. N. Ofori-Opoku, V. Fallah, M. Greenwood, S. Esmaeili, N. Provatas, Multicomponent phase-field crystal model for structural transformations in metal alloys. Phys. Rev. B 87, 134105 (2013)

    Article  Google Scholar 

  59. C. Okoro, K. Vanstreels, R. Labie, O. Luhn, B. Vandevelde, B. Verlinden, D. Vandepitte, Influence of annealing condition on the mechanical and microstructural behavior of electroplated Cu-TSV. J. Micromech. Microeng. 20, 045032 (2010)

    Article  Google Scholar 

  60. C. Okoro, C. Huyghebaert, J. Van Olmen, R. Labie, K. Lambrinou, B. Vandevelde, E. Beyne, D. Vandepitte, Elimination of the axial deformation problem of CuTSV in 3D integration. AIP Conf. Proc. 1300, 214 (2010)

    Article  Google Scholar 

  61. C. Okoro, R. Labie, K. Vanstreels, A. Franquet, M. Gonzalez, B. Vandevelde, E. Beyne, D. Vandepitte, B. Verlinden, Impact of the electrodeposition chemistry used for TSV filling on the microstructural and thermo-mechanical response of Cu. J. Mater. Sci. 46, 3868–3882 (2011)

    Article  Google Scholar 

  62. C. Okoro, L.E. Levine, R. Xu, K. Hummler, Y. Obeng, X-ray micro-beam diffraction measurement of the effect of thermal cycling on stress in Cu TSV: a comparative study, in: Electronic Components & Technology Conference (IEEE, 2014), p. 1648

    Google Scholar 

  63. C. Okoro, J.W. La, F. Golshany, K. Hummler, Y.S. Obeng, A detailed failure analysis examination of the effect of thermal cycling on Cu TSV reliability. IEEE Trans. Electron Dev. 61, 15–22 (2014)

    Article  Google Scholar 

  64. C. Okoro, L.E. Levine, R. Xu, Y.S. Obeng, Experimentally, how does Cu TSV diameter influence its stress state? in: Electronic Components & Technology Conference (IEEE, 2015), p. 54

    Google Scholar 

  65. K.A. Peterson, I. Dutta, M.W. Chen, Diffusionally accommodated interfacial sliding in metal-silicon systems. Acta Mater. 51, 2831–2846 (2003)

    Article  Google Scholar 

  66. D. Peirce, R.J. Asaro, A. Needleman, An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall. 30, 1087–1119 (1982)

    Article  Google Scholar 

  67. N. Provatas, K. Elder, Phase-Field Methods in Material Science and Engineering (Wiley-VCH, Weinheim, 2010)

    Book  Google Scholar 

  68. D. Raabe, D. Ma, F. Roters, Effects of initial orientation, sample geometry and friction on anisotropy and crystallographic orientation changes in single crystal microcompression deformation: a crystal plasticity finite element study. Acta Mater. 55, 4567–4583 (2007)

    Article  Google Scholar 

  69. R. Radojcic, M. Nowak, M. Nakamoto, TechTuning: stress management for 3D through-silicon-via stacking technologies. AIP Conf. Proc. 1378, 5–20 (2011)

    Article  Google Scholar 

  70. F. Roters, Advanced material models for the crystal plasticity finite element method: development of a general CPFEM framework. Habilitation Thesis, RWTH Aachen University (2011)

    Google Scholar 

  71. F. Roters, P. Eisenlohr, C. Kords, D.D. Tjahjanto, M. Diehl, D. Raabe, DAMASK: the Düsseldorf Advanced MAterial Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. Procedia IUTAM 3, 3–10 (2012)

    Article  Google Scholar 

  72. S.K. Ryu, T. Jiang, K.H. Lu, J. Im, H.-Y. Son, K.-Y. Byun, R. Huang, P.S. Ho, Characterization of thermal stresses in through-silicon vias for three-dimensional interconnects by bending beam technique. Appl. Phys. Lett. 100, 041901 (2012)

    Article  Google Scholar 

  73. M. Seymour, F. Sanches, K. Elder, N. Provatas, Phase-field crystal approach for modeling the role of microstructure in multiferroic composite materials. Phys. Rev. B 92, 184109 (2015)

    Article  Google Scholar 

  74. M. Seymour, N. Provatas, Structural phase field crystal approach for modeling graphene and other two-dimensional structures. Phys. Rev. B 93, 035447 (2016)

    Article  Google Scholar 

  75. H.-A-S. Shin, B.-J. Kim, J.-H. Kim, S.-H. Hwang, A.S. Budiman, H.-Y. Son, K.-Y. Byun, N Tamura, M Kunz, D.-I. Kim, Y.-C. Joo, Microstructure evolution and defect formation in Cu through-silicon vias (TSVs) during thermal annealing. J. Electron Mater. 41, 712–719 (2012)

    Google Scholar 

  76. D. Smith, S. Singh, Y. Ramnath, M. Rabie, D. Zhang, L. England, TSV residual Cu step height analysis by white light interferometry for 3D integration, in: Electronic Components & Technology Conference (IEEE, 2015), Piscataway, New Jersey, US. p. 578

    Google Scholar 

  77. M. Song, K.R. Mundboth, J.A. Szpunar, L. Chen, R. Feng, Characterization of local strain/stress in copper through-silicon via structures using synchrotron X-ray microdiffraction, electron backscattered diffraction and nonlinear thermomechanical model. J. Micromech. Microeng. 25, 085002 (2015)

    Article  Google Scholar 

  78. P. Stefanovic, M. Haataja, N. Provatas, Phase field crystal study of deformation and plasticity in nanocrystalline materials. Phys. Rev. E 80, 046107 (2009)

    Article  Google Scholar 

  79. G.G. Stoney, The tension of metallic films deposited by electrolysis. Proc. R. Soc. Lond. A 82, 172–175 (1909)

    Article  Google Scholar 

  80. Y.C. Tan, C.M. Tan, X.W. Zhang, T.C. Chai, D.Q. Yu, Electromigration performance of through silicon via (TSV) – a modeling approach. Microelectron Reliab. 50, 1336–1340 (2010)

    Article  Google Scholar 

  81. G.I. Taylor, The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. R. Soc. Lond. A 145, 362–387 (1934)

    Article  MATH  Google Scholar 

  82. G.I. Taylor, The mechanism of plastic deformation of crystals. Part II. Comparison with observations. Proc. R. Soc. Lond. A 145, 388–404 (1934)

    Article  MATH  Google Scholar 

  83. T. Tian, R. Morusupalli, H. Shin, H.-Y. Son, K.-Y. Byun, Y.-C. Joo, R. Caramto, L. Smith, Y.-L. Shen, M. Kunz, N. Tamura, A.S. Budiman, On the mechanical stresses of Cu through-silicon via (TSV) samples fabricated by SK Hynix vs. SEMATECH Enabling robust and reliable 3-D interconnect/integrated circuit (IC) technology. Procedia Eng 139, 101–111 (2016)

    Google Scholar 

  84. A.D. Trigg, L.H. Yu, C.K. Cheng, R. Kumar, D.L. Kwong, T. Ueda, T. Ishigaki, K. Kang, W.S. Yoo, Three dimensional stress mapping of silicon surrounded by copper filled through silicon vias using polychromator-based multi-wavelength micro Raman spectroscopy. Appl. Phys. Exp. 3, 086601 (2010)

    Article  Google Scholar 

  85. V.H. Vartanian, R.A. Allen, L. Smith, K. Hummler, S. Olson, B.C. Sapp, Metrology needs for through-silicon via fabrication. J. Micro/Nanolith. MEMS MOEMS 13, 011206 (2014)

    Article  Google Scholar 

  86. H. Wang, P. Cheng, H. Wang, R. Liu, L. Sun, Q. Rao, Z. Wang, T. Gu, G. Ding, Effect of current density on microstructure and mechanical property of Cu micro-cylinders electrodeposited in through silicon vias. Mater. Charact. 109, 164–172 (2015)

    Article  Google Scholar 

  87. B. Wu, A. Kumar, S. Pamarthy, High aspect ratio silicon etch: a review. J. Appl. Phys. 108, 051101 (2010)

    Article  Google Scholar 

  88. K.A. Wu, M. Plapp, P.W. Voorhees, Controlling crystal symmetries in phase-field crystal models. J. Phys.: Condens. Matter 22, 364102 (2010)

    Google Scholar 

  89. Z. Wu, Z. Huang, Y. Ma, H. Xiong, P.P. Conway, Effects of the microstructure of copper through-silicon vias on their thermally induced linear elastic mechanical behavior. Electron Mater. Lett. 10, 281–292 (2014)

    Article  Google Scholar 

  90. H. Xiong, Z. Huang, P. Conway, A method for quantification of the effects of size and geometry on the microstructure of miniature interconnects. J. Electron Mater. 43, 618–629 (2014)

    Article  Google Scholar 

  91. Q. Zhao, J. Im, R. Huang, P.S. Ho, Extension of micro-Raman spectroscopy for full-component stress characterization of TSV structures, in: Electronic Components & Technology Conference (IEEE, 2013), Piscataway, New Jersey, US. p. 397

    Google Scholar 

Download references

Acknowledgements

The editors would like to thank Prof. Tengfei Jiang from University of Central Florida for her critical review of this chapter. The authors (PK and ID) acknowledge financial support for some of the reported work by the National Science Foundation (DMR-0513874 and DMR-1309843), Cisco Research Council, and the Semiconductor Research Corporation. The contributions of, and collaborations with several colleagues (Dr. Lutz Meinshausen, formerly of Washington State University, and currently at Global Foundries, Dresden, Germany; Dr. Tae-Kyu Lee, formerly of Cisco Systems, and currently at Portland State University; Dr. Ravi Mahajan of Intel Corporation; Dr. Vijay Sarihan of Freescale Semiconductor, and Professor Muhannad Bakir of Georgia Tech) are gratefully acknowledged. The assistance of current and former colleagues (Dr. Hanry Yang of Washington State University, and Dr. Zhe Huang, formerly of Washington State University, and currently at Seagate Technologies) with the literature survey is also gratefully acknowledged. The author (ZH) acknowledges financial support for his research by the Pearl River Science and Technology Nova Program of Guangzhou under grant no. 2012J2200074, the National Natural Science Foundation of China (NSFC) under grant no. 51004118, and Guangdong Natural Science Foundation under grant no. 2015A030312011. The author (ZH) also acknowledges useful discussions with Dr. F. Roters of Max Planck Institute for Iron Research on the CPFE method and Prof. N. Provatas of McGill University on phase crystal models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiheng Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, P., Dutta, I., Huang, Z., Conway, P. (2017). Microstructural and Reliability Issues of TSV. In: Li, Y., Goyal, D. (eds) 3D Microelectronic Packaging. Springer Series in Advanced Microelectronics, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-44586-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44586-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44584-7

  • Online ISBN: 978-3-319-44586-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics