Skip to main content
Log in

Electrical and Mechanical Properties of Through-Silicon Vias and Bonding Layers in Stacked Wafers for 3D Integrated Circuits

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermal stress issues in a three-dimensional (3D) stacked wafer system were examined using finite-element analysis of the stacked wafers. This paper elucidates the effects of the bonding dimensions on mechanical failure and the keep-away zone, where devices cannot be located because of the stress in the Si. The key factors in decreasing the thermal strain were the bonding diameter and thickness. When the bonding diameter decreased from 40 μm to 12 μm, the equivalent strain decreased by 83%. It is noteworthy that the keep-away zone also decreased from 17 μm to zero when the bonding diameter decreased from 40 μm to 12 μm. When the bonding thickness doubled, the equivalent strain decreased by 44%. The effects of the dimensions and arrangement of through-silicon vias (TSV) were also analyzed. Small TSV diameter and pitch are important to decrease the equivalent strain, especially when the amount of Cu per unit volume is fixed. When the TSV diameter and pitch decreased fourfold, the equivalent strain decreased by 70%. The effects of TSV height and the number of die stacks were not significant, because the underfill acted as a buffer against thermal strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, and H.S.P. Wong, Proc. IEEE 89, 259–287 (2001).

    Article  CAS  Google Scholar 

  2. L. Xue, C.C. Liu, H.S. Kim, S. Kim, and S. Tiwari, IEEE Trans. Electron Dev. 50, 601–609 (2003).

    Article  CAS  Google Scholar 

  3. S.F. Al-Sarawi, D. Abbott, and P.D. Franzon, IEEE Trans. Compon. Packag. Manuf. Technol. B 21, 2–14 (1998).

    Article  Google Scholar 

  4. J.C. Lin, W.C. Chiou, K.F. Yang, H.B. Chang, Y.C. Lin, E.B. Liao, J.P. Hung, Y.L. Lin, P.H. Tsai, Y.C. Shih, T.J. Wu, W.J. Wu, F.W. Tsai, Y.H. Huang, T.Y. Wang, C.L. Yu, C.H. Chang, M.F. Chen, S.Y. Hou, C.H. Tung, S.P. Jeng, and D.C.H. Yu, Electron Devices Meeting (IEDM), 2010 IEEE International (2010), pp. 2.1.1–2.1.4.

  5. K.H. Lu, X. Zhang, S.K. Ryu, J. Im, R. Huang, and P.S. Ho, Proceedings of Electronic Components and Technology Conference (San Diego, CA, 2009), pp. 630–634.

  6. S.-K. Ryu, K.-H. Lu, X. Zhang, J.-H. Im, P.S. Ho, and R. Huang, IEEE Trans. Dev. Mater. Reliab. 11, 35–43 (2011).

    Article  CAS  Google Scholar 

  7. R.R. Reeber and K. Wang, Mater. Chem. Phys. 46, 259–264 (1996).

    Article  CAS  Google Scholar 

  8. M.B. Bever, Encyclopedia of Materials Science and Engineering (Oxford: Pergamon, 1986).

    Google Scholar 

  9. P. Dixit, S. Yaofeng, J. Miao, J.H.L. Pang, R. Chatterjee, and R.R. Tummala, J. Electrochem. Soc. 155, H981 (2008).

    Google Scholar 

  10. X. Liu, Q. Chen, P. Dixit, R. Chatterjee, R.R. Tummala, and S.K. Sitaraman, Proceedings of Electronic Components and Technology Conference (San Diego, CA, 2009), pp. 624–629.

  11. P.A. Miranda and A.J. Moll, Proceedings of Electronic Components and Technology Conference (San Diego, CA, 2006), pp. 844–848.

  12. N. Ranganathan, K. Prasad, N. Balasubramanian, and K.L. Pey, J. Micromech. Microeng. 18, 075018 (2008).

    Google Scholar 

  13. C.S. Selvanayagam, J.H. Lau, X. Zhang, S.K.W. Seah, K. Vaidyanathan, and T.C. Chai, Proceedings of Electronic Components and Technology Conference (Lake Buena Vista, FL, 2008), pp. 1073–1081.

  14. S.E. Thompson, G.Y. Sun, Y.S. Choi, and T. Nishida, IEEE Trans. Electron Dev. 53, 1010–1020 (2006).

    Article  CAS  Google Scholar 

  15. C. Okoro, Y. Yang, B. Vandevelde, B. Swinnen, D. Vandepitte, B. Verlinden, and I. De Wolf, 2008 IEEE International Interconnect Technology Conference, IITC (Burlingame, CA, 2008), pp. 16–18.

  16. G. Ramakrishna, F. Liu, and S.K. Sitaraman, Proceedings of Electronic Components and Technology Conference (San Diego, CA, 2002), pp. 439–445.

  17. J. Zhang, M.O. Bloomfield, J.Q. Lu, R.J. Gutmann, and T.S. Cale, Microelectron. Eng. 82, 534–547 (2005).

    Article  Google Scholar 

  18. A.M.H.K.H. Hellwege, Landolt–Bornstein: Numerical Data and Functional Relationships in Science and Technology, Group III: Vol. 1 (New York: Springer, 1966).

    Google Scholar 

  19. G.B.B.E.A. Brandes, Smithells Metals Reference Book, 7th ed. (Oxford: Buttterworth-Heinemann, 1999).

    Google Scholar 

  20. L. Chen, Q. Zhang, G.Z. Wang, X.M. Xie, and Z.N. Cheng, IEEE Trans. Adv. Packag. 24, 17–24 (2001).

    Article  CAS  Google Scholar 

  21. C.J. Smithells, Metals Reference Book, Vol. III (Butterworths, London, 1967), pp. 686–708.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Chang Joo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, SH., Kim, BJ., Lee, HY. et al. Electrical and Mechanical Properties of Through-Silicon Vias and Bonding Layers in Stacked Wafers for 3D Integrated Circuits. J. Electron. Mater. 41, 232–240 (2012). https://doi.org/10.1007/s11664-011-1767-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1767-x

Keywords

Navigation