Skip to main content

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 3))

Abstract

β-Mannanases (endo-1,4-β-d-mannanase) is endohydrolase that catalyze the random hydrolysis of the β-1,4-d-mannopyranosyl linkage within the main chain of various mannan-based polysaccharides to yield mannooligosaccharides products. β-Mannanase have been isolated and characterized from different sources including bacteria, fungi, higher plants, and animals. However, microbial mannanases are wildly used in the industrial application. β-Mannanases was classified based on the amino acid sequence similarity into glycoside hydrolase (GH) families 5 and 26 and a few member of family 113. These enzymes from different organisms have different properties such as enzyme activity, optimal pH, and optimal temperature. So, β-mannanases with high specific activity and remarkable enzymatic properties are required for the application. β-Mannanase is very useful enzyme that has been used in several industrial applications including food, feed, pulp, and paper industries. This enzyme can be used to improve the bleaching of pulp by facilitating the release of lignin from paper pulp leading to the reduction of chemical reagents. It can be used to reduce the viscosity of instant coffee and to clarify fruit juices and wines in food industry. β-Mannanase also have been used as animal feed additive enzyme to increase the nutritional value of animal feed components. Moreover, there is increasing interest in using β-mannanase to produce mannooligosaccharides (MOS) which have the prebiotic properties from natural mannan-based substrates. This enzyme is also used for the pretreatment of biomass in the bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adibmoradi M, Mehri M (2007) Effects of β-mannanase on broiler performance and gut morphology. In: 16th European symposium on poultry nutrition, Stasburg, France, pp 471–47

    Google Scholar 

  • Alam NH, Meier R, Schneider H, Sarker SA, Bardhan PK, Mahalanabis D, Fuchs GJ, Gyr N (2000) Partially hydrolyzed guar gum supplemented oral rehydration solution in the treatment of acute diarrhea in children. J Pediatr Gastroenterol Nutr 31:503–507

    Article  Google Scholar 

  • Araujo A, Ward OP (1990) Hemicellulases of Bacillus species: preliminary comparative studies on production and properties of mannanases and galactanases. J Appl Bacteriol 8:253–261

    Article  Google Scholar 

  • Balat M, Balat H, Ȍz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34(5):551–573

    Article  Google Scholar 

  • Baurhoo B, Ferket PR, Zhao X (2009) Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers. Poult Sci 88(11):2262–2272

    Article  Google Scholar 

  • Benech RO, Li X, Patton D, Powlowski J, Storms R, Bourbonnais R, Paice M, Tsang A (2007) Recombinant expression, characterization, and pulp prebleaching property of a Phanerochaete chrysosporium endo-β-1,4-mannanase. Enzyme Microb Technol 41:740–747

    Article  Google Scholar 

  • Bhoria P, Singh G, Hoondal GS (2009) Optimization of mannanase production from Streptomyces sp. PG-08-03 in submerged fermentation. Bioresources 4(3):1130–1138

    Google Scholar 

  • Brownell HH, Saddle JN (1987) Steam pretreatment of lignocellulosic material for enhanced enzymatic hydrolysis. Biotechnol Bioeng 29(2):228–235

    Article  Google Scholar 

  • Buckeridge MS, Dietrich SMC, Lima DU (2000) Galactomannans as the reserve carbohydrate of legume seeds. In: Gupta AK, Kaur N (eds) Developments in crop science, vol 26. Elsevier Science B.V., Amsterdam, pp 283–316

    Google Scholar 

  • Cerveró JM, Skovgaard PA, Hanne CF, Sørensenc R, Jørgensen H (2010) Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol. Enzyme Microbial Technol 46:177–184

    Article  Google Scholar 

  • Chanzy H, Dube M, Marchessault RH (2004) Single crystals and oriented crystallization of ivory nut mannan. Biopolymers 18:887–898

    Article  Google Scholar 

  • Chauhan PS, Puri N, Sharma P, Gupta N (2012) Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl Microbiol Biotechnol 93:1817–1830

    Article  Google Scholar 

  • Daskiran MRG, Teeter DW, Fodge D, Hsiao HY (2004) An evaluation of endo-ß-d-mannanase (Hemicell) effects on broiler performance and energy use in diets varying in β-mannan content. Poult Sci 83:662–668

    Article  Google Scholar 

  • Davies GJKS, Wilson KS, Henrissat B (1997) Nomenclature for sugar binding subsites in glycosyl hydrolases. Biochemistry 321:557–559

    Article  Google Scholar 

  • Dea ICM, Morrison A (1975) Chemistry and interactions of seed galactomannans. Adv Carbohydr Chem Bio-Chem 31:241–242

    Article  Google Scholar 

  • Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27:197–216

    Article  Google Scholar 

  • Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 70:70–78

    Article  Google Scholar 

  • Galbe M, Liden G, Zacchi G (2005) Production of ethanol from biomass-research in Sweden. J Sci Ind Res 64:905–919

    Google Scholar 

  • Galbe M, Sassner P, Wingren A, Zacchi G (2007) Process engineering economics of bioethanol production. Adv Biochem Eng Biotechnol 108:303–327

    Google Scholar 

  • Gonzáles CA, Fernández MN, Sahagún AM, García VJJ, Díez LMJ, Calle PAP, Castro RLJ, Sierra VM (2004) Glucomannan: properties and therapeutic applications. Nutr Hosp 19(1):45–50

    Google Scholar 

  • Handford MG, Baldwin TC, Goubet F, Prime TA, Miles J, Yu X, Dupree P (2003) Localisation and characterisation of cell wall mannan polysaccharides in Arabidopsis thaliana. Planta 218:27–36

    Article  Google Scholar 

  • Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon J, Davie G (1995) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci 92:7090–7094

    Article  Google Scholar 

  • Hogg D, Pell G, Dupree P, Goubet F, Martin-oure SM, Armand S, Gilbert HJ (2003) The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Biochem J 371:1027–1043

    Article  Google Scholar 

  • Hongshu Z, Jinggan Y, Yan Z (2002) The glucomannan from ramie. Carbohydr Polym 47:83–86

    Article  Google Scholar 

  • Kosaric N, Vardar-Sukan F (2001) Potential source of energy and chemical products. The biotechnology of ethanol. M. Roehr. Wiley, Weinheim

    Google Scholar 

  • Lundqvist J, Jacobs A, Palm M, Zacchi G, Dahlman O, Stalbrand H (2003) Characterization of glactoglucomannan extracted from spruce (Picea abies) by heatfractionation at different conditions. Carbohydr Polym 51:203–211

    Article  Google Scholar 

  • Moreira LRS, Filho EXF (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178

    Article  Google Scholar 

  • Mosier NS, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  Google Scholar 

  • Nunes MDS, Santos RAM, Ferreira SM, Vieira J, Vieira CP (2006) Variability patterns and positively selected sites at the gametophytic self-incompatibility pollen SFB gene in a wild self-incompatible Prunus spinosa (Rosaceae) population. New Phytol 172:577–587

    Article  Google Scholar 

  • Orozco A, Ahmad M, Rooney D, Walker G (2007) Dilute acid hydrolysis of cellulose and cellulosic bio-waste using a microwave reactor system. Process Saf Environ Prot 85:446–449

    Article  Google Scholar 

  • Oshima M (1965) Wood chemistry process engineering apsects. Noyes Development Corporation, New York

    Google Scholar 

  • Parisi GC, Zilli M, Miani MP, Carrara M, Bottona E, Verdianelli G, Battaglia G, Desideri S, Faedo A, Marzolino C, Tonon A, Ermani M, Leandro G (2002) High-fibre diet supplementation in patients with irritable bowel syndrome (IBS): a multicenter, randomized, open trial comparison between wheat bran diet and partially hydrolyzed guar gum (PHGG). Dig Dis Sci 47(8):1697–1704

    Article  Google Scholar 

  • Popa VI, Spiridon J (1998) Hemicelluloses: structure, properties, in polysaccharides. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versality. Marcel Dekker, New York, pp 297–311

    Google Scholar 

  • Puls J (1997) Chemistry and biochemistry of hemicelluloses: relationship between hemicellulose structure and enzymes required for hydrolysis. Macromol Symp 120:183–196

    Article  Google Scholar 

  • Puls J, Schuseil J (1993) Chemistry of hemicellulose: relationship between hemicellulose structure and enzyme required for hydrolysis. In Coughlan MP, Hazlewood GP (eds) Hemicellulose and hemicellulases. Portland, London, pp 1–27

    Google Scholar 

  • Shobha MS, Kumar ABV, Tharanathan RN, Koka R, Gaonkar AK (2005) Modification of guar galactomannan with the aid of Aspergillus niger pectinase. Carbohydr Polym 62:267–273

    Article  Google Scholar 

  • Spring PC, Wenk KA, Dawson KA, Newman KE (2000) The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poult Sci 79(2):205–211

    Article  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  MathSciNet  Google Scholar 

  • Stoll D, Boraston A, Stålbrand H, McLean BW, Kilburn DG, Warren AJ (2000) Mannanase Man26A from Cellulomonas fimi has a mannan-binding module. FEMS Microbiol Lett 183:265–269

    Article  Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Bioethanol review. Bioresources 2(3):472–499

    Google Scholar 

  • Takeno F, Yamada H, Sekiya K, Fujitani B, Ohtsu K (1990) Effect of partially decomposed guar gum on high-cholesterol-fed rats and non-dietary fiber-fed rats. J Jpn Soc Nutr Food Sci. 43:421–425

    Article  Google Scholar 

  • Tamamura Y, Araki T, Amagoi H, Mori H, Morishita T (1995) Purification and characterization of an extracellular beta-1,4-mannanase from a marine bacterium, Vibrio sp. strain MA-138. Appl Environ Microbiol 61(12):4454–4458

    Google Scholar 

  • Titapoka S, Keawsompong S, Haltrich D, Nitisinprasert S (2008) Selection and characterization of mannanase-producing bacteria useful for the formation of prebiotic manno-oligosaccharides from copra meal. World J Microbiol Biotechnol 24:1425–1433

    Article  Google Scholar 

  • Van Zyl WH, Rose SH, Trollope K, Gorgens JF (2010) Fungal β-mannanases: mannan hydrolysis, heterologous production and biotechnological applications. Process Biochem 45:203–1213

    Article  Google Scholar 

  • Willför S, Sundberg K, Tenkanen M, Holmbom B (2007) Spruce-derived mannans—a potential raw material for hydrocolloids and novel advanced natural materials. Carbohydr Polym 72(2):197–210

    Article  Google Scholar 

  • Ximenes EA, Chen H, Kataeva IA, Cotta MA, Felix CR, Ljungdahl LG, Li XL (2005) A mannanase, ManA, of the polycentric anaerobic fungus Orpinomyces sp. strain PC-2 has carbohydrate binding and docking modules. Can J Microbiol 51:559–568

    Article  Google Scholar 

  • Yang Y, Iji PA, Kocher A, Mikkelsen LL, Choct M (2008) Effects of mannanoligosaccharide and fructooligosaccharide on the response of broilers to pathogenic Escherichia coli challenge. Br Poult Sci 49(5):550–559

    Article  Google Scholar 

  • Zhang Y, Ju J, Peng H, Gao F, Zhou C, Zeng Y, Xue Y, Li Y, Henrissat B, Gao GF, Ma Y (2008) Biochemical and structural characterization of the intracellular mannanase AaManA of Alicyclobacillus acidocaldarius reveals a novel glycoside hydrolase family belonging to clan GH-A. J Biol Chem 283(46):31551–31558

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suttipun Keawsompong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Keawsompong, S. (2016). Mannanase. In: Gupta, V. (eds) Microbial Enzymes in Bioconversions of Biomass. Biofuel and Biorefinery Technologies, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-43679-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43679-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43677-7

  • Online ISBN: 978-3-319-43679-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics