Skip to main content

Applications of Proteomics in Aquaculture

  • Chapter
  • First Online:
Agricultural Proteomics Volume 1

Abstract

Aquaculture is one of the fastest growing world industries due to the increased demand of fishery products for human consumption and capture restrictions as a result of aquatic ecosystems exploitation. Aquaculture is therefore an extremely competitive business with major challenges to keep a high quality farmed fish through a sustainable production system. These challenges imposed quite important changes in this more traditional market, namely at the level of integrating scientific knowledge and research. Proteomics presents itself as a powerful tool not only for a better understanding of the marine organisms biology but also to provide solutions to deal with changes and the increasing demand in the system’s production line to ensure the required supply. In this book chapter we will give an overview of aquaculture nowadays, its challenges and describe relevant proteomics studies in several areas of this industry. A brief description of the proteomics technical approaches applied to aquaculture will also be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FAO (2015) Global aquaculture production statistics database updated to 2013. Summary information 2015

    Google Scholar 

  2. Rodrigues PM, Silva TS, Dias J, Jessen F (2012) PROTEOMICS in aquaculture: applications and trends. J Proteomics 75:4325–4345. doi:10.1016/j.jprot.2012.03.042

    Article  CAS  PubMed  Google Scholar 

  3. FAO (2008) World fisheries and aquaculture

    Google Scholar 

  4. Mukhopadhyay R (2009) DNA sequencers: the next generation. Anal Chem 81:1736–1740. doi:10.1021/ac802712u

    Article  CAS  PubMed  Google Scholar 

  5. FAO (2014) The state of world fisheries and aquaculture 2014

    Google Scholar 

  6. Hilliou L (2014) Hybrid carrageenans: isolation, chemical structure, and gel properties. Adv Food Nutr Res 72:17–43. doi:10.1016/B978-0-12-800269-8.00002-6

    Article  CAS  PubMed  Google Scholar 

  7. Gladyshev MI, Sushchik NN, Makhutova ON (2013) Production of EPA and DHA in aquatic ecosystems and their transfer to the land. Prostaglandins Other Lipid Mediat 107:117–126. doi:10.1016/j.prostaglandins.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  8. Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae—a review. J Algal Biomass Utln 3:89–100

    Google Scholar 

  9. Meena DK, Das P, Kumar S et al (2013) Beta-glucan: an ideal immunostimulant in aquaculture (a review). Fish Physiol Biochem 39:431–457. doi:10.1007/s10695-012-9710-5

    Article  CAS  PubMed  Google Scholar 

  10. Caipang CMA, Lazado CC, Berg I et al (2011) Influence of alginic acid and fucoidan on the immune responses of head kidney leukocytes in cod. Fish Physiol Biochem 37:603–612

    Article  CAS  PubMed  Google Scholar 

  11. Hutson KS, Mata L, Paul NA, de Nys R (2012) Seaweed extracts as a natural control against the monogenean ectoparasite, Neobenedenia sp., infecting farmed barramundi (Lates calcarifer). Int J Parasitol 42:1135–1141. doi:10.1016/j.ijpara.2012.09.007

    Article  PubMed  Google Scholar 

  12. Long M, Zhao J, Li T et al (2015) Transcriptomic and proteomic analyses of splenic immune mechanisms of rainbow trout (Oncorhynchus mykiss) infected by Aeromonas salmonicida subsp. salmonicida. J Proteomics 122:41–54. doi:10.1016/j.jprot.2015.03.031

    Article  CAS  PubMed  Google Scholar 

  13. Nynca J, Arnold GJ, Fröhlich T et al (2014) Proteomic identification of rainbow trout sperm proteins. Proteomics 14:1569–1573. doi:10.1002/pmic.201300521

    Article  CAS  PubMed  Google Scholar 

  14. Campos A, Apraiz I, da Fonseca RR, Cristobal S (2015) Shotgun analysis of the marine mussel Mytilus edulis haemolymph proteome and mapping the innate immunity elements. Proteomics 15:4021–4029

    Article  CAS  PubMed  Google Scholar 

  15. Talakhun W, Phaonakrop N, Roytrakul S et al (2014) Proteomic analysis of ovarian proteins and characterization of thymosin-β and RAC-GTPase activating protein 1 of the giant tiger shrimp Penaeus monodon. Comp Biochem Physiol Part D Genomics Proteomics 11:9–19. doi:10.1016/j.cbd.2014.05.002

    Article  CAS  PubMed  Google Scholar 

  16. De Santis C, Crampton VO, Bicskei B, Tocher DR (2015) Replacement of dietary soy- with air classified faba bean protein concentrate alters the hepatic transcriptome in Atlantic salmon (Salmo salar) parr. Comp Biochem Physiol Part D Genomics Proteomics 16:48–58. doi:10.1016/j.cbd.2015.07.005

    Article  PubMed  CAS  Google Scholar 

  17. Xue X, Hixson SM, Hori TS et al (2015) Atlantic salmon (Salmo salar) liver transcriptome response to diets containing Camelina sativa products. Comp Biochem Physiol Part D Genomics Proteomics 14:1–15. doi:10.1016/j.cbd.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  18. Braceland M, Bickerdike R, Tinsley J et al (2013) The serum proteome of Atlantic salmon, Salmo salar, during pancreas disease (PD) following infection with salmonid alphavirus subtype 3 (SAV3). J Proteomics 94:423–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Provan F, Jensen LB, Uleberg KE et al (2013) Proteomic analysis of epidermal mucus from sea lice-infected Atlantic salmon, Salmo salar L. J Fish Dis 36:311–321. doi:10.1111/jfd.12064

    Article  CAS  PubMed  Google Scholar 

  20. Klinbunga S, Petkorn S, Kittisenachai S et al (2012) Identification of reproduction-related proteins and characterization of proteasome alpha 3 and proteasome beta 6 cDNAs in testes of the giant tiger shrimp Penaeus monodon. Mol Cell Endocrinol 355:143–152. doi:10.1016/j.mce.2012.02.005

    Article  CAS  PubMed  Google Scholar 

  21. Dietrich MA, Arnold GJ, Fröhlich T et al (2015) Proteomic analysis of extracellular medium of cryopreserved carp (Cyprinus carpio L.) semen. Comp Biochem Physiol Part D Genomics Proteomics 15:49–57. doi:10.1016/j.cbd.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  22. Dietrich MA, Arnold GJ, Fröhlich T, Ciereszko A (2014) In-depth proteomic analysis of carp (Cyprinus carpio L.) spermatozoa. Comp Biochem Physiol Part D Genomics Proteomics 12:10–15. doi:10.1016/j.cbd.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  23. Breton TS, Berlinsky DL (2014) Characterizing ovarian gene expression during oocyte growth in Atlantic cod (Gadus morhua). Comp Biochem Physiol Part D Genomics Proteomics 9:1–10

    Article  CAS  PubMed  Google Scholar 

  24. Timmins-Schiffman E, Coffey WD, Hua W et al (2014) Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigas. BMC Genom 15:951. doi:10.1186/1471-2164-15-951

    Article  CAS  Google Scholar 

  25. McLean L, Young IS, Doherty MK et al (2007) Global cooling: cold acclimation and the expression of soluble proteins in carp skeletal muscle. Proteomics 7:2667–2681. doi:10.1002/pmic.200601004

    Article  CAS  PubMed  Google Scholar 

  26. Stewart MJ, Favrel P, Rotgans BA et al (2014) Neuropeptides encoded by the genomes of the Akoya pearl oyster Pinctata fucata and Pacific oyster Crassostrea gigas: a bioinformatic and peptidomic survey. BMC Genom 15:840. doi:10.1186/1471-2164-15-840

    Article  Google Scholar 

  27. Bigot L, Beets I, Dubos M-P et al (2014) Functional characterization of a short neuropeptide F-related receptor in a lophotrochozoan, the mollusk Crassostrea gigas. J Exp Biol 217:2974–2982

    Article  CAS  PubMed  Google Scholar 

  28. Marie B, Zanella-Cléon I, Guichard N et al (2011) Novel proteins from the calcifying shell matrix of the Pacific oyster Crassostrea gigas. Mar Biotechnol (NY) 13:1159–1168. doi:10.1007/s10126-011-9379-2

    Article  CAS  Google Scholar 

  29. Schultz IR, Nagler JJ, Swanson P et al (2013) Toxicokinetic, toxicodynamic, and toxicoproteomic aspects of short-term exposure to trenbolone in female fish. Toxicol Sci 136:413–429. doi:10.1093/toxsci/kft220

    Article  CAS  PubMed  Google Scholar 

  30. Li Z-H, Li P, Sulc M et al (2012) Hepatic proteome sensitivity in rainbow trout after chronically exposed to a human pharmaceutical verapamil. Mol Cell Proteomics 11:M111.008409–M111.008409. doi:10.1074/mcp.M111.008409

    Google Scholar 

  31. Hampel M, Alonso E, Aparicio I et al (2015) Hepatic proteome analysis of Atlantic Salmon (Salmo salar) after exposure to environmental concentrations of human pharmaceuticals. Mol Cell Proteomics 14:371–381. doi:10.1074/mcp.M114.045120

    Article  CAS  PubMed  Google Scholar 

  32. Eyckmans M, Benoot D, Van Raemdonck GAA et al (2012) Comparative proteomics of copper exposure and toxicity in rainbow trout, common carp and gibel carp. Comp Biochem Physiol—Part D Genomics Proteomics 7:220–232. doi:10.1016/j.cbd.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  33. Karlsen OA, Bjørneklett S, Berg K et al (2011) Integrative environmental genomics of Cod (Gadus morhua): the proteomics approach. J Toxicol Environ Health A 74:494–507. doi:10.1080/15287394.2011.550559

    Article  CAS  PubMed  Google Scholar 

  34. Martins J, Campos A, Osório H et al (2014) Proteomic profiling of cytosolic glutathione transferases from three bivalve species: Corbicula fluminea, Mytilus galloprovincialis and Anodonta cygnea. Int J Mol Sci 15:1887–1900. doi:10.3390/ijms15021887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Cordero H, Brinchmann MF, Cuesta A et al (2015) Skin mucus proteome map of European sea bass (Dicentrarchus labrax). Proteomics 15:4007–4020

    Article  CAS  PubMed  Google Scholar 

  36. Dietrich MA, Arnold GJ, Nynca J et al (2014) Characterization of carp seminal plasma proteome in relation to blood plasma. J Proteomics 98:218–232. doi:10.1016/j.jprot.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  37. Zhang P, Li C, Zhang P et al (2014) iTRAQ-based proteomics reveals novel members involved in pathogen challenge in sea cucumber Apostichopus japonicus. PLoS ONE 9:e100492. doi:10.1371/journal.pone.0100492

    Article  PubMed  PubMed Central  Google Scholar 

  38. Piovesana S, Capriotti AL, Caruso G et al (2015) Labeling and label free shotgun proteomics approaches to characterize muscle tissue from farmed and wild gilthead sea bream (Sparus aurata). J Chromatogr A. doi:10.1016/j.chroma.2015.07.049

    PubMed  Google Scholar 

  39. Kültz D, Li J, Zhang X et al (2015) Population-specific plasma proteomes of marine and freshwater three-spined sticklebacks (Gasterosteus aculeatus). Proteomics. doi:10.1002/pmic.201500132

    PubMed Central  Google Scholar 

  40. Buján N, Hernández-Haro C, Monteoliva L et al (2015) Comparative proteomic study of Edwardsiella tarda strains with different degrees of virulence. J Proteomics 127:310–320

    Article  PubMed  CAS  Google Scholar 

  41. Niksirat H, James P, Andersson L et al (2015) Label-free protein quantification in freshly ejaculated versus post-mating spermatophores of the noble crayfish Astacus astacus. J Proteomics 123:70–77. doi:10.1016/j.jprot.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  42. Nynca J, Arnold GJ, Fröhlich T, Ciereszko A (2015) Cryopreservation-induced alterations in protein composition of rainbow trout semen. Proteomics 15:2643–2654. doi:10.1002/pmic.201400525

    Article  CAS  PubMed  Google Scholar 

  43. Groh KJ, Schönenberger R, Eggen RIL et al (2013) Analysis of protein expression in zebrafish during gonad differentiation by targeted proteomics. Gen Comp Endocrinol 193:210–220. doi:10.1016/j.ygcen.2013.07.020

    Article  CAS  PubMed  Google Scholar 

  44. Jin C, Padra JT, Sundell K et al (2015) Atlantic salmon carries a range of novel O-Glycan structures differentially localized on skin and intestinal mucins. J Proteome Res 14:3239–3251. doi:10.1021/acs.jproteome.5b00232

    Article  CAS  PubMed  Google Scholar 

  45. Broom DM (2010) Animal welfare: an aspect of care, sustainability, and food quality required by the public. J Vet Med Educ 37:83–88

    Article  PubMed  Google Scholar 

  46. Southgate P, Wall T (2001) Welfare of farmed fish at slaughter. In Pract 23:277–284. doi:10.1136/inpract.23.5.277

    Article  Google Scholar 

  47. Fish HOW, To R, Stressors N (2002) Fisheries Society of the British isles briefing paper 2, table of contents. Granta 44

    Google Scholar 

  48. Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42:517–525

    Article  CAS  PubMed  Google Scholar 

  49. Conte FS (2004) Stress and the welfare of cultured fish. Appl Anim Behav Sci 86:205–223

    Article  Google Scholar 

  50. Ashley PJ (2007) Fish welfare: current issues in aquaculture. Appl Anim Behav Sci 104:199–235

    Article  Google Scholar 

  51. Provan F, Bjornstad A, Pampanin DM et al (2006) Mass spectrometric profiling—a diagnostic tool in fish? Mar Environ Res 62:S105–S108. doi:10.1016/j.marenvres.2006.04.002 S0141-1136(06)00046-8 [pii]

  52. Alves RN, Cordeiro O, Silva TS et al (2010) Metabolic molecular indicators of chronic stress in gilthead seabream (Sparus aurata) using comparative proteomics. Aquaculture 299:57–66

    Article  CAS  Google Scholar 

  53. Cordeiro OD, Silva TS, Alves RN et al (2012) Changes in liver proteome expression of senegalese sole (Solea senegalensis) in response to repeated handling stress. Mar Biotechnol 14:714–729

    Article  CAS  PubMed  Google Scholar 

  54. Morzel M, Chambon C, Lefevre F et al (2006) Modifications of trout (Oncorhynchus mykiss) muscle proteins by preslaughter activity. J Agric Food Chem 54:2997–3001. doi:10.1021/jf0528759

    Article  CAS  PubMed  Google Scholar 

  55. Silva TS, Cordeiro OD, Matos ED et al (2012) Effects of preslaughter stress levels on the post-mortem sarcoplasmic proteomic profile of gilthead seabream muscle. J Agric Food Chem 60:9443–9453. doi:10.1021/jf301766e

    Article  CAS  PubMed  Google Scholar 

  56. Jiang H, Li F, Xie Y et al (2009) Comparative proteomic profiles of the hepatopancraes in Fenneropenaeus chinensis response to hypoxic stress. Proteomics 9:3353–3367. doi:10.1002/pmic.200800518

    Article  CAS  PubMed  Google Scholar 

  57. Sun L, Liu S, Bao L et al (2015) Claudin multigene family in channel catfish and their expression profiles in response to bacterial infection and hypoxia as revealed by meta-analysis of RNA-Seq datasets. Comp Biochem Physiol Part D Genomics Proteomics 13:60–69. doi:10.1016/j.cbd.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  58. Wulff T, Hoffmann EK, Roepstorff P et al (2008) Comparison of two anoxia models in rainbow trout cells by a 2-DE and MS/MS-based proteome approach. Proteomics 8:2035–2044. doi:10.1002/pmic.200700944

    Article  CAS  PubMed  Google Scholar 

  59. Smith RW, Cash P, Ellefsen S, Nilsson GE (2009) Proteomic changes in the crucian carp brain during exposure to anoxia. Proteomics 9:2217–2229. doi:10.1002/pmic.200800662

    Article  CAS  PubMed  Google Scholar 

  60. Mendelsohn BA, Malone JP, Townsend RR, Gitlin JD (2009) Proteomic analysis of anoxia tolerance in the developing zebrafish embryo. Comp Biochem Physiol D-Genomics Proteomics 4:21–31

    Article  CAS  Google Scholar 

  61. Salas-Leiton E, Canovas-Conesa B, Zerolo R et al (2009) Proteomics of juvenile senegal sole (Solea senegalensis) affected by gas bubble disease in hyperoxygenated ponds. Mar Biotechnol 11:473–487. doi:10.1007/s10126-008-9168-8

    Article  CAS  PubMed  Google Scholar 

  62. Lee J, Valkova N, White MP, Kultz D (2006) Proteomic identification of processes and pathways characteristic of osmoregulatory tissues in spiny dogfish shark (Squalus acanthias). Comp Biochem Physiol Part D Genomics Proteomics 1:328–343. doi:10.1016/j.cbd.2006.07.001 S1744-117X(06)00073-6 [pii]

  63. Dowd WW, Harris BN, Cech Jr. JJ, Kultz D (2010) Proteomic and physiological responses of leopard sharks (Triakis semifasciata) to salinity change. J Exp Biol 213:210–224. doi:10.1242/jeb.031781 213/2/210 [pii]

  64. Kultz D, Fiol D, Valkova N et al (2007) Functional genomics and proteomics of the cellular osmotic stress response in “non-model” organisms. J Exp Biol 210:1593–1601. doi:10.1242/jeb.000141 210/9/1593 [pii]

  65. Ky CL, de Lorgeril J, Hirtz C et al (2007) The effect of environmental salinity on the proteome of the sea bass (Dicentrarchus labrax L.). Anim Genet 38:601–608. doi:10.1111/j.1365-2052.2007.01652.x AGE1652 [pii]

  66. Lu XJ, Chen J, Huang ZA et al (2010) Proteomic analysis on the alteration of protein expression in gills of ayu (Plecoglossus altivelis) associated with salinity change. Comp Biochem Physiol Part D Genomics Proteomics 5:185–189. doi:10.1016/j.cbd.2010.03.002 S1744-117X(10)00024-9 [pii]

  67. Papakostas S, Vasemägi A, Himberg M, Primmer CR (2014) Proteome variance differences within populations of European whitefish (Coregonus lavaretus) originating from contrasting salinity environments. J Proteomics 105:144–150. doi:10.1016/j.jprot.2013.12.019

    Article  CAS  PubMed  Google Scholar 

  68. Ibarz A, Martin-Perez M, Blasco J et al (2010) Gilthead sea bream liver proteome altered at low temperatures by oxidative stress. Proteomics 10:963–975. doi:10.1002/pmic.200900528

    CAS  PubMed  Google Scholar 

  69. Addis MF, Cappuccinelli R, Tedde V et al (2010) Proteomic analysis of muscle tissue from gilthead sea bream (Sparus aurata, L.) farmed in offshore floating cages. Aquaculture 309:245–252

    Article  CAS  Google Scholar 

  70. Bosworth CA IV, Chou CW, Cole RB, Rees BB (2005) Protein expression patterns in zebrafish skeletal muscle: initial characterization and the effects of hypoxic exposure. Proteomics 5:1362–1371

    Article  CAS  PubMed  Google Scholar 

  71. Bohne-Kjersem A, Skadsheim A, Goksoyr A, Grosvik BE (2009) Candidate biomarker discovery in plasma of juvenile cod (Gadus morhua) exposed to crude North Sea oil, alkyl phenols and polycyclic aromatic hydrocarbons (PAHs). Mar Environ Res 68:268–277

    Article  CAS  PubMed  Google Scholar 

  72. Russell S, Hayes MA, Simko E, Lumsden JS (2006) Plasma proteomic analysis of the acute phase response of rainbow trout (Oncorhynchus mykiss) to intraperitoneal inflammation and LPS injection. Dev Comp Immunol 30:393–406. doi:10.1016/j.dci.2005.06.002 S0145-305X(05)00117-5 [pii]

  73. Brunt J, Hansen R, Jamieson DJ, Austin B (2008) Proteomic analysis of rainbow trout (Oncorhynchus mykiss, Walbaum) serum after administration of probiotics in diets. Vet Immunol Immunopathol 121:199–205

    Article  CAS  PubMed  Google Scholar 

  74. Ghisaura S, Anedda R, Pagnozzi D et al (2014) Impact of three commercial feed formulations on farmed gilthead sea bream (Sparus aurata, L.) metabolism as inferred from liver and blood serum proteomics. Proteome Sci 12:44. doi:10.1186/s12953-014-0044-3

    Article  PubMed  PubMed Central  Google Scholar 

  75. Panserat S, Kaushik SJ (2010) Regulation of gene expression by nutritional factors in fish. Aquac Res 41:751–762

    Article  CAS  Google Scholar 

  76. Martin SAM, Vilhelmsson O, Medale F et al (2003) Proteomic sensitivity to dietary manipulations in rainbow trout. Biochim Biophys Acta-Proteins Proteomics 1651:17–29

    Article  CAS  Google Scholar 

  77. Vilhelmsson OT, Martin SAM, Medale F et al (2004) Dietary plant-protein substitution affects hepatic metabolism in rainbow trout (Oncorhynchus mykiss). Br J Nutr 92:71–80

    Article  CAS  PubMed  Google Scholar 

  78. Sissener NH, Martin SA, Cash P et al (2010) Proteomic profiling of liver from Atlantic salmon (Salmo salar) fed genetically modified soy compared to the near-isogenic non-GM line. Mar Biotechnol 12:273–281. doi:10.1007/s10126-009-9214-1

    Article  CAS  PubMed  Google Scholar 

  79. Keyvanshokooh S, Tahmasebi-Kohyani A (2012) Proteome modifications of fingerling rainbow trout (Oncorhynchus mykiss) muscle as an effect of dietary nucleotides. Aquaculture 324–325:79–84. doi:10.1016/j.aquaculture.2011.10.013

    Article  CAS  Google Scholar 

  80. Silva TS, da Costa AMR, Conceição LEC et al (2014) Metabolic fingerprinting of gilthead seabream (Sparus aurata) liver to track interactions between dietary factors and seasonal temperature variations. Peer J 2:e527. doi:10.7717/peerj.527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Pineiro C, Barros-Velazquez J, Vazquez J et al (2003) Proteomics as a tool for the investigation of seafood and other marine products. J Proteome Res 2:127–135

    Article  CAS  PubMed  Google Scholar 

  82. Zhou X, Ding Y, Wang Y (2012) Proteomics: present and future in fish, shellfish and seafood. Rev Aquac 4:11–20. doi:10.1111/j.1753-5131.2012.01058.x

    Article  Google Scholar 

  83. Tedesco S, Mullen W, Cristobal S et al (2014) High-throughput proteomics: a new tool for quality and safety in fishery products. Curr Protein Peptide Sci 15:118–133

    Article  CAS  Google Scholar 

  84. Carrera M, Cañas B, Gallardo JM (2013) Proteomics for the assessment of quality and safety of fishery products. Food Res Int 54:972–979

    Article  CAS  Google Scholar 

  85. Puerto M, Campos A, Prieto A et al (2011) Differential protein expression in two bivalve species; Mytilus galloprovincialis and Corbicula fluminea; exposed to Cylindrospermopsis raciborskii cells. Aquat Toxicol 101:109–116. doi:10.1016/j.aquatox.2010.09.009

    Article  CAS  PubMed  Google Scholar 

  86. Ronzitti G, Milandri A, Scortichini G et al (2008) Protein markers of algal toxin contamination in shellfish. Toxicon 52:705–713. doi:10.1016/j.toxicon.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  87. Nzoughet KJ, Hamilton JTG, Floyd SD et al (2008) Azaspiracid: first evidence of protein binding in shellfish. Toxicon 51:1255–1263. doi:10.1016/j.toxicon.2008.02.016

    Article  CAS  PubMed  Google Scholar 

  88. Chan LL, Hodgkiss IJ, Lam PKS et al (2005) Use of two-dimensional gel electrophoresis to differentiate morphospecies of Alexandrium minutum, a paralytic shellfish poisoning toxin-producing dinoflagellate of harmful algal blooms. Proteomics 5:1580–1593

    Article  CAS  PubMed  Google Scholar 

  89. Chan LL, Sit W-H, Lam PK-S et al (2006) Identification and characterization of a “biomarker of toxicity” from the proteome of the paralytic shellfish toxin-producing dinoflagellate Alexandrium tamarense (Dinophyceae). Proteomics 6:654–666

    Article  CAS  PubMed  Google Scholar 

  90. Shepard JL, Olsson B, Tedengren M, Bradley BP (2000) Protein expression signatures indented in Mytilus edulis exposed to PCBs, copper and salinity stress. Mar Environ Res 50:337–340

    Article  CAS  PubMed  Google Scholar 

  91. Rodríguez-Ortega MJ, Grøsvik BE, Rodríguez-Ariza A et al (2003) Changes in protein expression profiles in bivalve molluscs (Chamaelea gallina) exposed to four model environmental pollutants. Proteomics 3:1535–1543. doi:10.1002/pmic.200300491

    Article  PubMed  CAS  Google Scholar 

  92. Chora S, Starita-Geribaldi M, Guigonis J-M et al (2009) Effect of cadmium in the clam Ruditapes decussatus assessed by proteomic analysis. Aquat Toxicol 94:300–308

    Article  CAS  PubMed  Google Scholar 

  93. Silvestre F, Huynh TT, Bernard A et al (2010) A differential proteomic approach to assess the effects of chemotherapeutics and production management strategy on giant tiger shrimp Penaeus monodon. Comp Biochem Physiol Part D Genomics Proteomics 5:227–233

    Article  PubMed  CAS  Google Scholar 

  94. Hazen TH, Martinez RJ, Chen Y et al (2009) Rapid identification of Vibrio parahaemolyticus by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 75:6745–6756. doi:10.1128/AEM.01171-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cordwell SJ, Len ACL, Touma RG et al (2008) Identification of membrane-associated proteins from Campylobacter jejuni strains using complementary proteomics technologies. Proteomics 8:122–139

    Article  CAS  PubMed  Google Scholar 

  96. Fernández-No IC, Böhme K, Calo-Mata P et al (2012) Isolation and characterization of Streptococcus parauberis from vacuum-packaging refrigerated seafood products. Food Microbiol 30:91–97. doi:10.1016/j.fm.2011.10.012

    Article  PubMed  CAS  Google Scholar 

  97. Böhme K, Fernandez-No IC, Gallardo JM et al (2011) Safety assessment of fresh and processed seafood products by MALDI-TOF mass fingerprinting. Food Bioprocess Technol 4:907–918

    Article  Google Scholar 

  98. Böhme K, Fernández-No IC, Barros-Velázquez J et al (2010) Species differentiation of seafood spoilage and pathogenic gram-negative bacteria by MALDI-TOF mass fingerprinting. J Proteome Res 9:3169–3183

    Article  PubMed  CAS  Google Scholar 

  99. Martínez-Gomariz M, Hernáez ML, Gutiérrez D et al (2009) Proteomic analysis by two-dimensional differential gel electrophoresis (2D DIGE) of a high-pressure effect in Bacillus cereus. J Agric Food Chem 57:3543–3549. doi:10.1021/jf803272a

    Article  PubMed  CAS  Google Scholar 

  100. Booth NJ, Bilodeau-Bourgeois AL (2009) Proteomic analysis of head kidney tissue from high and low susceptibility families of channel catfish following challenge with Edwardsiella ictaluri. Fish Shellfish Immunol 26:193–196

    Article  CAS  PubMed  Google Scholar 

  101. Wang H-C, Wang H-C, Leu J-H et al (2007) Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Dev Comp Immunol 31:672–686. doi:10.1016/j.dci.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  102. Chai Y-M, Yu S-S, Zhao X-F et al (2010) Comparative proteomic profiles of the hepatopancreas in Fenneropenaeus chinensis response to white spot syndrome virus. Fish Shellfish Immunol 29:480–486

    Article  CAS  PubMed  Google Scholar 

  103. Bourchookarn A, Havanapan PO, Thongboonkerd V, Krittanai C (2008) Proteomic analysis of altered proteins in lymphoid organ of yellow head virus infected Penaeus monodon. Biochim Biophys Acta 1784:504–511

    Article  CAS  PubMed  Google Scholar 

  104. Chongsatja PO, Bourchookarn A, Lo CF et al (2007) Proteomic analysis of differentially expressed proteins in Penaeus vannamei hemocytes upon Taura syndrome virus infection. Proteomics 7:3592–3601

    Article  CAS  PubMed  Google Scholar 

  105. Booy AT, Haddow JD, Ohlund LB et al (2005) Application of isotope coded affinity tag (ICAT) analysis for the identification of differentially expressed proteins following infection of atlantic salmon (Salmo salar) with infectious hematopoietic necrosis virus (IHNV) or Renibacterium salmoninarum. J Proteome Res 4:325–334

    Article  CAS  PubMed  Google Scholar 

  106. Cao A, Fuentes J, Comesaña P et al (2009) A proteomic approach envisaged to analyse the bases of oyster tolerance/resistance to bonamiosis. Aquaculture 295:149–156

    Article  CAS  Google Scholar 

  107. Carrera M, Cañas B, Gallardo JM (2012) Rapid direct detection of the major fish allergen, parvalbumin, by selected MS/MS ion monitoring mass spectrometry. J Proteomics 75:3211–3220

    Article  CAS  PubMed  Google Scholar 

  108. Abdel Rahman AM, Rahman AMA, Kamath S et al (2010) Analysis of the allergenic proteins in black tiger prawn (Penaeus monodon) and characterization of the major allergen tropomyosin using mass spectrometry. Rapid Commun Mass Spectrom 24:2462–2470

    Article  PubMed  CAS  Google Scholar 

  109. Yu C-J, Lin Y-F, Chiang B-L, Chow L-P (2003) Proteomics and immunological analysis of a novel shrimp allergen, Pen m 2. J Immunol 170:445–453. doi:10.4049/jimmunol.170.1.445

    Article  CAS  PubMed  Google Scholar 

  110. Nakamura R, Satoh R, Nakajima Y et al (2009) Comparative study of GH-transgenic and non-transgenic amago salmon (Oncorhynchus masou ishikawae) allergenicity and proteomic analysis of amago salmon allergens. Regul Toxicol Pharmacol 55:300–308

    Article  CAS  PubMed  Google Scholar 

  111. Piñeiro C, Vázquez J, Marina AI et al (2001) Characterization and partial sequencing of species-specific sarcoplasmic polypeptides from commercial hake species by mass spectrometry following two-dimensional electrophoresis. Electrophoresis 22:1545–1552. doi:10.1002/1522-2683(200105)22:8<1545:AID-ELPS1545>3.0.CO;2-5

    Article  PubMed  Google Scholar 

  112. Mazzeo MF, De Giulio B, Guerriero G et al (2008) Fish authentication by MALDI-TOF mass spectrometry. J Agric Food Chem 56:11071–11076

    Article  CAS  PubMed  Google Scholar 

  113. Martinez I, Jakobsen Friis T (2004) Application of proteome analysis to seafood authentication. Proteomics 4:347–354. doi:10.1002/pmic.200300569

    Article  CAS  PubMed  Google Scholar 

  114. Carrera M, Cañas B, Piñeiro C et al (2006) Identification of commercial hake and grenadier species by proteomic analysis of the parvalbumin fraction. Proteomics 6:5278–5287

    Article  CAS  PubMed  Google Scholar 

  115. Martinez I, Slizyte R, Dauksas E (2007) High resolution two-dimensional electrophoresis as a tool to differentiate wild from farmed cod (Gadus morhua) and to assess the protein composition of klipfish. Food Chem 102:504–510. doi:10.1016/j.foodchem.2006.03.037

    Article  CAS  Google Scholar 

  116. Berrini A, Tepedino V, Borromeo V, Secchi C (2006) Identification of freshwater fish commercially labelled “perch” by isoelectric focusing and two-dimensional electrophoresis. Food Chem 96:163–168

    Article  CAS  Google Scholar 

  117. Ortea I, Canas B, Gallardo JM (2011) Selected tandem mass spectrometry ion monitoring for the fast identification of seafood species. J Chromatogr A 1218:4445–4451

    Article  CAS  PubMed  Google Scholar 

  118. Volta P, Riccardi N, Lauceri R, Tonolla M (2012) Discrimination of freshwater fish species by matrix-assisted laser desorption/ionization—time of flight mass spectrometry (MALDI-TOF MS): a pilot study. J Limnol 71:17. doi:10.4081/jlimnol.2012.e17

    Article  Google Scholar 

  119. Veiseth-Kent E, Grove H, Faergestad EM, Fjaera SO (2010) Changes in muscle and blood plasma proteomes of Atlantic salmon (Salmo salar) induced by crowding. Aquaculture 309:272–279

    Article  CAS  Google Scholar 

  120. Monti G, De Napoli L, Mainolfi P et al (2005) Monitoring food quality by microfluidic electrophoresis, gas chromatography, and mass spectrometry techniques: effects of aquaculture on the sea bass (Dicentrarchus labrax). Anal Chem 77:2587–2594. doi:10.1021/ac048337x

    Article  CAS  PubMed  Google Scholar 

  121. Addis MF, Pisanu S, Preziosa E et al (2012) 2D DIGE/MS to investigate the impact of slaughtering techniques on postmortem integrity of fish filet proteins. J Proteomics 75:3654–3664

    Article  CAS  PubMed  Google Scholar 

  122. Salem M, Kenney PB, Rexroad CE, Yao J (2010) Proteomic signature of muscle atrophy in rainbow trout. J Proteomics 73:778–789. doi:10.1016/j.jprot.2009.10.014

    Article  CAS  PubMed  Google Scholar 

  123. Verrez-Bagnis V, Ladrat C, Morzel M et al (2001) Protein changes in post mortem sea bass (Dicentrarchus labrax) muscle monitored by one- and two-dimensional gel electrophoresis. Electrophoresis 22:1539–1544

    Article  CAS  PubMed  Google Scholar 

  124. Terova G, Addis MF, Preziosa E et al (2011) Effects of postmortem storage temperature on sea bass (Dicentrarchus labrax) muscle protein degradation: analysis by 2-D DIGE and MS. Proteomics 11:2901–2910

    Article  CAS  PubMed  Google Scholar 

  125. Kjaersgard IVH, Norrelykke MR, Baron CP, Jessen F (2006) Identification of carbonylated protein in frozen rainbow trout (Oncorhynchus mykiss) fillets and development of protein oxidation during frozen storage. J Agric Food Chem 54:9437–9446

    Article  PubMed  CAS  Google Scholar 

  126. Martinez I, Jakobsen Friis T, Careche M (2001) Post mortem muscle protein degradation during ice-storage of Arctic (Pandalus borealis) and tropical (Penaeus japonicus and Penaeus monodon) shrimps: a comparative electrophoretic and immunological study. J Sci Food Agric 81:1199–1208. doi:10.1002/jsfa.931

    Article  CAS  Google Scholar 

  127. Bauchart C, Chambon C, Mirand PP et al (2007) Peptides in rainbow trout (Oncorhynchus mykiss) muscle subjected to ice storage and cooking. Food Chem 100:1566–1572

    Article  CAS  Google Scholar 

  128. Ortea I, Rodríguez A, Tabilo-Munizaga G et al (2010) Effect of hydrostatic high-pressure treatment on proteins, lipids and nucleotides in chilled farmed salmon (Oncorhynchus kisutch) muscle. Eur Food Res Technol 230:925–934. doi:10.1007/s00217-010-1239-1

    Article  CAS  Google Scholar 

  129. Martinez I, Solberg C, Lauritzen K, Ofstad R (1992) Two-dimensional electrophoretic analyses of cod (Gadus morhua, L.) whole muscle proteins, water-soluble fraction and surimi. Effect of the addition of CaCl2 and MgCl2 during the washing procedure. Appl Theor Electrophor 2:201–206

    CAS  PubMed  Google Scholar 

  130. Morzel M, Verrez-Bagnis V, Arendt EK, Fleurence J (2000) Use of two-dimensional electrophoresis to evaluate proteolysis in salmon (Salmo salar) muscle as affected by a lactic fermentation. J Agric Food Chem 48:239–244

    Article  CAS  PubMed  Google Scholar 

  131. Badii F, Howell NK (2002) Effect of antioxidants, citrate, and cryoprotectants on protein denaturation and texture of frozen cod (Gadus morhua). J Agric Food Chem 50:2053–2061

    Article  CAS  PubMed  Google Scholar 

  132. Kinoshita Y, Sato T, Naitou H et al (2007) Proteomic studies on protein oxidation in bonito (Katsuwonus pelamis) muscle. Food Sci Technol Res 13:133–138

    Article  CAS  Google Scholar 

  133. Kjaersgard IVH, Jessen F (2004) Two-dimensional gel electrophoresis detection of protein oxidation in fresh and tainted rainbow trout muscle. J Agric Food Chem 52:7101–7107

    Article  PubMed  CAS  Google Scholar 

  134. Baron CP, Kjaersgård IVH, Jessen F, Jacobsen C (2007) Protein and lipid oxidation during frozen storage of rainbow trout (Oncorhynchus mykiss). J Agric Food Chem 55:8118–8125

    Article  CAS  PubMed  Google Scholar 

  135. Sanmartín E, Arboleya JC, Iloro I et al (2012) Proteomic analysis of processing by-products from canned and fresh tuna: identification of potentially functional food proteins. Food Chem 134:1211–1219. doi:10.1016/j.foodchem.2012.02.177

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

D. Schrama work is supported by grant Refª 31-03-05-FEP-0060 from Promar - Projetos Pilotos e a Transformação de Embarcações de Pesca.

A. Campos work is supported by postdoctoral grant (SFRH/BPD/103683/2014) from FCT.

The Institute of Molecular Pathology and Immunology of the University of Porto integrates the Institute for Research and Innovation in Health, which is partially supported by the Portuguese Foundation for Science and Technology (FCT). This work is funded by the European Regional Development Fund (FEDER) through the Operational Program for Competitiveness Factors (COMPETE) and by national funds through the FCT, under the project PEst-C/SAU/LA0003/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro M. Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodrigues, P.M., Schrama, D., Campos, A., Osório, H., Freitas, M. (2016). Applications of Proteomics in Aquaculture. In: Salekdeh, G. (eds) Agricultural Proteomics Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-43275-5_10

Download citation

Publish with us

Policies and ethics