Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

Many sophisticated Global Navigation Satellite System (GlossaryTerm

GNSS

) applications require high-precision satellite orbit and clock products. The GNSS orbits and clocks are usually derived from the analysis of tracking data collected by a globally distributed GNSS receiver network. The estimation process adjusts parameters for the satellite orbits, transmitter and receiver clocks, station positions, tropospheric delays, Earth orientation, intersystem and interfrequency biases, and carrier-phase ambiguities. The estimation requires detailed modeling of geophysical processes, atmospheric and relativistic effects, receiver tracking modes, antenna phase centers, spacecraft properties, and attitude control algorithms. This chapter describes precise orbit and clock determination of the GNSS constellations as performed by the analysis centers of the International GNSS Service, including models, estimation strategies, products, and the combination of orbit and clock solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

analysis center

AIUB:

Astronomical Institute of the University of Bern

ANTEX:

antenna exchange (format)

CDMA:

code division multiple access

CNAV:

civil navigation message

CODE:

Center for Orbit Determination in Europe

CoM:

center-of-mass

CoN:

center-of-network

DCB:

differential code bias

ECEF:

Earth-centered Earth-fixed

ECI:

Earth-centered inertial

ECMWF:

European Centre for Medium-Range Weather Forecasts

ECOM:

Empirical CODE Orbit Model

ESA:

European Space Agency

FDMA:

frequency division multiple access

GFZ:

Deutsches GeoForschungsZentrum

GIM:

global ionospheric map

GLONASS:

Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)

GNSS:

global navigation satellite system

GPS:

Global Positioning System

GPT:

global pressure and temperature (model)

IERS:

International Earth Rotation and Reference Systems Service

IGS:

International GNSS Service

ISC:

intersignal correction

ITRF:

International Terrestrial Reference Frame

JPL:

Jet Propulsion Laboratory

LEO:

low Earth orbit

MEO:

medium Earth orbit

NASA:

National Aeronautics and Space Administration

PCO:

phase center offset

PCV:

phase center variation

POD:

precise orbit determination

PPP:

precise point positioning

RINEX:

receiver independent exchange (format)

RMS:

root mean square

SINEX:

solution independent exchange (format)

SLR:

satellite laser ranging

SP3:

Standard Product 3 (format)

SRP:

solar radiation pressure

SVN:

space vehicle number

TEC:

total electron content

TGD:

timing group delay

TRF:

terrestrial reference frame

UTC:

Coordinated Universal Time

VLBI:

very long baseline interferometry

VMF:

Vienna mapping function

References

  1. O. Montenbruck, P. Steigenberger, A. Hauschild: Broadcast versus precise ephemerides: A multi-GNSS perspective, GPS Solut. 19(2), 321–333 (2015)

    Article  Google Scholar 

  2. G. Petit, B. Luzum: IERS Conventions (2010), IERS Technical Note No. 36 (Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt a. M. 2010)

    Google Scholar 

  3. M. Rothacher, G. Beutler, T.A. Herring, R. Weber: Estimation of nutation using the Global Positioning System, J. Geophys. Res. 104(B3), 4835–4859 (1999)

    Article  Google Scholar 

  4. B.J. Luzum, J.R. Ray, M.S. Carter, F.J. Josties: Recent improvements to IERS Bulletin A combination and prediction, GPS Solut. 4(3), 34–40 (2001)

    Article  Google Scholar 

  5. C. Bizouard, D. Gambis: The combined solution C04 for Earth Orientation Parameters consistent with International Terrestrial Reference Frame 2008, Observatoire de Paris, https://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf

  6. P. Rebischung, J. Griffiths, J. Ray, R. Schmid, X. Collilieux, B. Garayt: IGS08: the IGS realization of ITRF2008, GPS Solut. 16(4), 483–494 (2012)

    Article  Google Scholar 

  7. P.M. Mathews, V. Dehant, J.M. Gipson: Tidal station displacements, J. Geophys. Res. 102(B9), 20469–20477 (1997)

    Article  Google Scholar 

  8. H.-G. Scherneck: A parametrized solid Earth tide model and ocean loading effects for global geodetic base-line measurements, Geophys. J. Int. 106(3), 677–694 (1991)

    Article  Google Scholar 

  9. F. Lyard, F. Lefevre, T. Letellier, O. Francis: Modelling the global ocean tides: Modern insights from FES2004, Ocean Dyn. 56(5/6), 394–415 (2006)

    Article  Google Scholar 

  10. L. Carrere, F. Lyard, A. Guillot, M. Cancet: FES 2012: A new tidal model taking advantage of nearly 20 years of altimetry measurements, Proc. 20 Years Prog. Radar Altimetry Symp., Venice-Lido (CNES/ESA, Toulouse 2012) p. 5

    Google Scholar 

  11. S.D. Desai: Observing the pole tide with satellite altimetry, J. Geophys. Res. 107(C11,3180), 1–13 (2003) doi:10.1029/2001JC001224

    Google Scholar 

  12. R.D. Ray, R.M. Ponte: Barometric tides from ECMWF operational analyses, Ann. Geophys. 21(8), 1897–1910 (2003)

    Article  Google Scholar 

  13. J. Boehm, R. Heinkelmann, H. Schuh: Short Note: A global model of pressure and temperature for geodetic applications, J. Geod. 81(10), 679–683 (2007)

    Article  Google Scholar 

  14. J. Boehm, A. Niell, P. Tregoning, H. Schuh: Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geophys. Res. Lett. 33(L07304), 1–4 (2006) doi:10.1029/2005GL025546

    Google Scholar 

  15. J. Böhm, G. Möller, M. Schindelegger, G. Pain, R. Weber: Development of an improved empirical model for slant delays in the troposphere (GPT2w), GPS Solut. 19(3), 433–441 (2014)

    Article  Google Scholar 

  16. J. Boehm, B. Werl, H. Schuh: Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J. Geophys. Res. 111(B02406), 1–9 (2006) doi:10.1029/2005JB003629

    Google Scholar 

  17. M. Fritsche, R. Dietrich, C. Knöfel, A. Rülke, S. Vey, M. Rothacher, P. Steigenberger: Impact of higher-order ionospheric terms on GPS estimates, Geophys. Res. Lett. 32(L23311), 1–5 (2005) doi:10.1029/2005GL024342

    Google Scholar 

  18. N. Ashby: Relativity in the global positioning system, Living Rev. 6(1), 1–42 (2003) doi:10.12942/lrr-2003-1

    Article  Google Scholar 

  19. R. Schmid, R. Dach, X. Collilieux, A. Jäggi, M. Schmitz, F. Dilssner: Absolute IGS antenna phase center model igs08.atx: Status and potential improvements, J. Geod. 90(4), 343–364 (2015)

    Article  Google Scholar 

  20. J.T. Wu, S.C. Wu, G.G. Hajj, W.I. Bertiger, S.M. Lichten: Effects of antenna orientation on GPS carrier-phase, Manuscr. Geod. 18, 91–98 (1993)

    Google Scholar 

  21. O. Montenbruck, R. Schmid, F. Mercier, P. Steigenberger, C. Noll, R. Fatkulin, S. Kogure, A.S. Ganeshan: GNSS satellite geometry and attitude models, Adv. Space Res. 56(6), 1015–1029 (2015)

    Article  Google Scholar 

  22. J. Kouba: A simplified yaw-attitude model for eclipsing GPS satellites, GPS Solut. 13(1), 1–12 (2009)

    Article  Google Scholar 

  23. F. Dilssner: GPS IIF-1 satellite, antenna phase center and attitude modeling, Inside GNSS 5(6), 59–64 (2010)

    Google Scholar 

  24. F. Dilssner, T. Springer, G. Gienger, J. Dow: The GLONASS-M satellite yaw-attitude model, Adv. Space Res. 47(1), 160–171 (2011)

    Article  Google Scholar 

  25. X. Dai, M. Ge, Y. Lou, C. Shi, J. Wickert, H. Schuh: Estimating the yaw-attitude of BDS IGSO and MEO satellites, J. Geod. 89(10), 1005–1018 (2015)

    Article  Google Scholar 

  26. Y. Ishijima, N. Inaba, A. Matsumoto, K. Terada, H. Yonechi, H. Ebisutani, S. Ukawa, T. Okamoto: Design and development of the first Quasi-Zenith Satellite attitude and orbit control system, IEEE Aerosp. Conf. (2009) doi:10.1109/AERO.2009.4839537

  27. C.J. Rodriguez-Solano: Impact of Albedo Modelling on GPS Orbits, Master Thesis (TU München, Munich 2009)

    Google Scholar 

  28. M. Ziebart, S. Edwards, S. Adhya, A. Sibthrope, P. Arrowsmith, P. Cross: High precision GPS IIR orbit prediction using analytical non-conservative force models, Proc. ION GNSS 2004, Long Beach (ION, Virginia 2004) pp. 1764–1770

    Google Scholar 

  29. IGS: GPS transmit power levels, http://acc.igs.org/orbits/thrust-power.txt

  30. N.K. Pavlis, S.A. Holmes, S.C. Kenyon, J.K. Factor: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res. 117(B04406), 1–38 (2012) doi:10.1029/2011JB008916

    Google Scholar 

  31. C.C. Finlay, S. Maus, C.D. Beggan, T.N. Bondar, A. Chambodut, T.A. Chernova, A. Chulliat, V.P. Golovkov, B. Hamilton, M. Hamoudi, R. Holme, G. Hulot, W. Kuang, B. Langlais, V. Lesur, F.J. Lowes, H. Luhr, S. Macmillan, M. Mandea, S. McLean, C. Manoj, M. Menvielle, I. Michaelis, N. Olsen, J. Rauberg, M. Rother, T.J. Sabaka, A. Tangborn, L. Toffner-Clausen, E. Thebault, A.W.P. Thomson, I. Wardinski, Z. Wei, T.I. Zvereva: International Geomagnetic Reference Field: The eleventh generation, Geophys. J. Int. 183(3), 1216–1230 (2010)

    Article  Google Scholar 

  32. Chalmers University: Online Ocean Tide Loading Computation Service http://holt.oso.chalmers.se/loading

  33. L. Petrov, J.-P. Boy: Study of the atmospheric pressure loading signal in very long baseline interferometry observations, J. Geophys. Res. 109(B03405), 1–14 (2004) doi:10.1029/2003JB002500

    Google Scholar 

  34. P. Tregoning, C. Watson, G. Ramillien, H. McQueen, J. Zhang: Detecting hydrologic deformation using GRACE and GPS, Geophys. Res. Lett. 36(L1540), 1–6 (2009) doi:10.1029/2009GL038718

    Google Scholar 

  35. P. Misra, P. Enge: Global Positioning System Signals, Measurements, and Performance, 2nd edn. (Ganga-Jamuna, Lincoln 2006)

    Google Scholar 

  36. J. Boehm, H. Schuh: Vienna mapping functions in VLBI analyses, Geophys. Res. Lett. 31(L01603), 1–4 (2004) doi:10.1029/2003GL018984

    Google Scholar 

  37. J. Saastamoinen: Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In: The Use of Artificial Satellites for Geodesy, Geophysical Monograph Series, Vol. 15, ed. by S.W. Henriksen, A. Mancini, B.H. Chovitz (AGU, Washington 1972) pp. 247–251

    Google Scholar 

  38. J.L. Davis, T.A. Herring, I.I. Shapiro, A.E.E. Rogers, G. Elgered: Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Sci. 20(6), 1593–1607 (1985)

    Article  Google Scholar 

  39. D. Bilitza, D. Altadill, Y. Zhang, C. Mertens, V. Truhlik, P. Richards, L. McKinnell, B. Reinisch: The International Reference Ionosphere 2012 – A model of international collaboration, J. Space Weather Space Clim. 4, A07 (2014)

    Article  Google Scholar 

  40. S. Kedar, G.A. Hajj, B.D. Wilson, M.B. Heflin: The effect of the second order GPS ionospheric correction on receiver positions, Geophys. Res. Lett. 30(16), 1–4 (2003) doi:10.1029/2003GL017639

    Article  Google Scholar 

  41. E.J. Petrie, M. Hernández-Pajares, P. Spalla, P. Moore, M.A. King: A review of higher order ionospheric refraction effects on dual frequency GPS, Surv. Geophys. 32(3), 197–253 (2011)

    Article  Google Scholar 

  42. M. Garcia-Fernandez, S.D. Desai, M.D. Butala, A. Komjathy: Evaluation of different approaches to modeling the second-order ionospheric delay on GPS measurements, J. Geophys. Res. Space Phys. 118(12), 7864–7873 (2013)

    Article  Google Scholar 

  43. M. Hernández-Pajares, J.M. Juan, J. Sanz, R. Orús: Second-order ionospheric term in GPS: Implementation and impact on geodetic estimates, J. Geophys. Res. 112(B08417), 1–16 (2007) doi:10.1029/2006JB004707

    Google Scholar 

  44. S. Bassiri, G.A. Hajj: Higher-order ionospheric effects on the global positioning system observables and means of modeling them, Manuscr. Geod. 18, 280–289 (1993)

    Google Scholar 

  45. N. Ashby, J.J. Spilker Jr.: Introduction to relativistic effects on the Global Positioning System. In: Global Positioning System: Theory and Applications, Vol. 1, ed. by B.W. Parkinson, J.J. Spilker Jr. (AIAA, Washington 1996) pp. 623–697

    Google Scholar 

  46. J. Kouba: Relativistic time transformations in GPS, GPS Solut. 5(4), 1–9 (2002)

    Article  Google Scholar 

  47. R. Schmid, P. Steigenberger, G. Gendt, M. Ge, M. Rothacher: Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas, J. Geod. 81(12), 781–798 (2007)

    Article  Google Scholar 

  48. Y.E. Bar-Sever: A new model for GPS yaw attitude, J. Geod. 70(11), 714–723 (1996)

    Article  Google Scholar 

  49. Y. Bar-Sever, D. Kuang: New empirically derived solar radiation pressure model for Global Positioning System satellites, IPN Prog. Rep. 42, 159 (2004)

    Google Scholar 

  50. J.P. Weiss, Y. Bar-Sever, W. Bertiger, S. Desai, M. Garcia-Fernandez, B. Haines, D. Kuang, C. Selle, A. Sibois, A. Sibthorpe: Orbit and attitude modeling at the JPL Analysis Center, Int. GNSS Serv. Workshop, Pasadena (IGS, Pasadena 2014)

    Google Scholar 

  51. H.F. Fliegel, T.E. Gallini: Solar force modeling of Block IIR Global Positioning System satellites, J. Spacecr. Rockets 33(6), 863–866 (1996)

    Article  Google Scholar 

  52. M. Ziebart, S. Adhya, A. Sibthorpe, S. Edwards, P. Cross: Combined radiation pressure and thermal modelling of complex satellites: Algorithms and on-orbit tests, Adv. Space Res. 36(3), 424–430 (2005)

    Article  Google Scholar 

  53. P.C. Knocke, J.C. Ries, B.D. Tapley: Earth radiation pressure effects on satellites, Proc. AIAA/AAS Astrodyn. Conf., Minneapolis (AIAA, Reston 1988) pp. 577–587

    Google Scholar 

  54. M. Ziebart, A. Sibthorpe, P. Cross, Y. Bar-Sever, B. Haines: Cracking the GPS-SLR orbit anomaly, Proc. ION GNSS 2007, Fort Worth (ION, Virginia 2007) pp. 2033–2038

    Google Scholar 

  55. C.J. Rodriguez-Solano, U. Hugentobler, P. Steigenberger, S. Lutz: Impact of Earth radiation pressure on GPS position estimates, J. Geod. 86(5), 309–317 (2012)

    Article  Google Scholar 

  56. B.A. Wielicki, B.R. Barkstrom, E.F. Harrison, R.B. Lee, G.L. Smith, J.E. Cooper: Clouds and the Earth’s radiant energy system (CERES): An Earth observing system experiment, Bull. Am. Meteorol. Soc. 77(5), 853–868 (1996)

    Article  Google Scholar 

  57. United States Coast Guard: https://www.navcen.uscg.gov/?Do=constellationstatus

  58. United States Coast Guard: https://www.navcen.uscg.gov/?pageName=currentNanus

  59. Information and Analysis Center for Positioning, Navigation and Timing: https://www.glonass-iac.ru/en/GLONASS

  60. Information and Analysis Center for Positioning, Navigation and Timing: https://www.glonass-iac.ru/en/CUSGLONASS/

  61. European GNSS Service Centre: http://www.gsc-europa.eu/system-status/Constellation-Information

  62. European GNSS Service Centre: http://www.gsc-europa.eu/system-status/user-notifications

  63. Cabinet Office: http://qzss.go.jp/en/technical/satellites/index.html#QZSS

  64. JAXA: http://qz-vision.jaxa.jp/USE/en/naqu

  65. G.J. Bierman: Factorization Methods for Discrete Sequential Estimation (Academic Press, New York 1977)

    Google Scholar 

  66. P. Axelrad, R.G. Brown: GPS navigation algorithms. In: Global Positioning System: Theory and Applications, Vol. 1, ed. by B.W. Parkinson, J.J. Spilker Jr. (AIAA, Washington 1996) pp. 409–433

    Google Scholar 

  67. B. Tapley, B. Schutz, G.H. Born: Statistical Orbit Determination (Academic Press, Burlington 2004)

    Google Scholar 

  68. R. Dach, F. Andritsch, D. Arnold, S. Bertone, P. Fridez, A. Jäggi, Y. Jean, A. Maier, L. Mervart, U. Meyer, E. Orliac, E. Ortiz-Geist, L. Prange, S. Scaramuzza, S. Schaer, D. Sidorov, A. Sušnik, A. Villiger, P. Walser, C. Baumann, G. Beutler, H. Bock, A. Gäde, S. Lutz, M. Meindl, L. Ostini, K. Sośnica, A. Steinbach, D. Thaller: Bernese GNSS Software Version 5.2, ed. by R. Dach, S. Lutz, P. Walser, P. Fridez (Astronomical Institute, University of Bern, Bern 2015)

    Google Scholar 

  69. M. Rothacher: Estimation of station heights with GPS. In: Vertical Reference Systems, International Association of Geodesy Symposia, Vol. 124, ed. by H. Drewes, A.H. Dodson, P.S. Fortes, L. Sanchez, P. Sandoval (Springer, Berlin, Heidelberg 2002) pp. 81–90

    Google Scholar 

  70. S. Jin, J. Wang, P.-H. Park: An improvement of GPS height estimations: Stochastic modeling, Earth Planets Space 57(4), 253–259 (2014)

    Article  Google Scholar 

  71. X. Luo, M. Mayer, B. Heck, J.L. Awange: A realistic and easy-to-implement weighting model for GPS phase observations, IEEE Trans. Geosci. Remote Sens. 52(10), 6110–6118 (2014)

    Article  Google Scholar 

  72. D.S. MacMillan, C. Ma: Atmospheric gradients and the VLBI terrestrial and celestial reference frames, Geophys. Res. Lett. 24(4), 453–456 (1997)

    Article  Google Scholar 

  73. O. Titov, V. Tesmer, J. Boehm: OCCAM v. 6.0 software for VLBI data analysis, Proc. IVS 2004 Gen. Meet. (2004) pp. 267–271

    Google Scholar 

  74. S. Wu, T.P. Yunck, C.L. Thornton: Reduced-dynamic technique for precise orbit determination of low Earth satellites, J. Guid. Control Dyn. 14(1), 24–30 (1991)

    Article  Google Scholar 

  75. G. Beutler, E. Brockmann, W. Gurtner, U. Hugentobler, L. Mervart, M. Rothacher, A. Verdun: Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): Theory and initial results, Manuscr. Geod. 19, 367–386 (1994)

    Google Scholar 

  76. T.A. Springer, G. Beutler, M. Rothacher: A new solar radiation pressure model for GPS satellites, GPS Solut. 2(3), 50–62 (1999)

    Article  Google Scholar 

  77. D. Arnold, M. Meindl, G. Beutler, R. Dach, S. Schaer, S. Lutz, L. Prange, K. Sośnica, L. Mervart, A. Jäggi: CODE’s new solar radiation pressure model for GNSS orbit determination, J. Geod. 89(8), 775–791 (2015)

    Article  Google Scholar 

  78. A. Sibthorpe, W. Bertiger, S.D. Desai, B. Haines, N. Harvey, J.P. Weiss: An evaluation of solar radiation pressure strategies for the GPS constellation, J. Geod. 85(8), 505–517 (2011)

    Article  Google Scholar 

  79. N. Romero: CC2NONCC update to handle more than 24 satellites per epoch, IGSMAIL-6542 (2012) https://igscb.jpl.nasa.gov/pipermail/igsmail/2012/007732.html

  80. P. Steigenberger, O. Montenbruck, U. Hessels: Performance evaluation of the early CNAV navigation message, Navigation 62(3), 219–228 (2015)

    Article  Google Scholar 

  81. O. Montenbruck, A. Hauschild, P. Steigenberger: Differential code bias estimation using multi-GNSS observations and global ionosphere maps, Navigation 61(3), 191–201 (2014)

    Article  Google Scholar 

  82. L. Mervart: Ambiguity Resolution Techniques in Geodetic and Geodynamic Applications of the Global Positioning System, Ph.D. Thesis, Geodätisch-geophysikalische Arbeiten in der Schweiz, Vol. 53 (Schweizerische Geodätische Kommission, Zürich 1995)

    Google Scholar 

  83. M. Ge, G. Gendt, G. Dick, F.P. Zhang: Improving carrier-phase ambiguity resolution in global GPS network solutions, J. Geod. 79(1), 103–110 (2005)

    Article  Google Scholar 

  84. S. Loyer, F. Perosanz, F. Mercier, H. Capdeville, J.-C. Marty: Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center, J. Geod. 86(11), 991–1003 (2012)

    Article  Google Scholar 

  85. P. Steigenberger, U. Hugentobler, S. Loyer, F. Perosanz, L. Prange, R. Dach, M. Uhlemann, G. Gendt, O. Montenbruck: Galileo orbit and clock quality of the IGS multi-GNSS experiment, Adv. Space Res. 55(1), 269–281 (2015)

    Article  Google Scholar 

  86. O. Montenbruck, P. Steigenberger, U. Hugentobler: Enhanced solar radiation pressure modeling for Galileo satellites, J. Geod. 89(3), 283–297 (2015)

    Article  Google Scholar 

  87. P. Steigenberger, U. Hugentobler, A. Hauschild, O. Montenbruck: Orbit and clock analysis of Compass GEO and IGSO satellites, J. Geod. 87(6), 515–525 (2013)

    Article  Google Scholar 

  88. J. Liu, D. Gua, B. Ju, Z. Shen, Y. Lai, D. Yi: A new empirical solar radiation pressure model for BeiDou GEO satellites, Adv. Space Res. 57(1), 234–244 (2016)

    Article  Google Scholar 

  89. Russian Institute of Space Device Engineering: Global Navigation Satellite System GLONASS – Interface Control Document, v5.1, (Russian Institute of Space Device Engineering, Moscow 2008)

    Google Scholar 

  90. L. Wanninger: Carrier-phase inter-frequency biases of GLONASS receivers, J. Geod. 86(2), 139–148 (2012)

    Article  Google Scholar 

  91. International GNSS Service Analysis Center Coordinator, http://acc.igs.org/

  92. Z. Deng, Q. Zhao, T. Springer, L. Prange, M. Uhlemann: Orbit and clock determination – BeiDou, Proc. IGS Workshop, Pasadena (IGS, Pasadena 2014)

    Google Scholar 

  93. P. Rebischung: IGb08, IGSMAIL-6663 (2012) https://igscb.jpl.nasa.gov/pipermail/igsmail/2012/006655.html

  94. X. Wu, J. Ray, T. van Dam: Geocenter motion and its geodetic and geophysical implications, J. Geodyn. 58, 44–66 (2012)

    Article  Google Scholar 

  95. R. Ferland, G. Gendt, T. Schöne: IGS reference frame maintenance, Celebrating a decade of the International GPS Service, Workshop and Symposium 2004, Bern, ed. by M. Meindl (Astronomical Institute, University of Bern, Bern 2005) pp. 13–34

    Google Scholar 

  96. CODE Analysis Strategy Summary (2016) https://igscb.jpl.nasa.gov/igscb/center/analysis/code.acn

  97. A. Hauschild, O. Montenbruck: Real-time clock estimation for precise orbit determination of LEO-satellites, Proc. ION GNSS 2008, Savannah (ION, Virginia 2008) pp. 581–589

    Google Scholar 

  98. H. Bock, R. Dach, A. Jäggi, G. Beutler: High-rate GPS clock corrections from CODE: Support of 1 Hz applications, J. Geod. 83(11), 1083–1094 (2009)

    Article  Google Scholar 

  99. T.A. Springer: NAPEOS Mathematical Models and Algorithms, DOPS-SYS-TN-0100-OPS-GN (ESA/ESOC, Darmstadt 2009)

    Google Scholar 

  100. JPL: GIPSY-OASIS, https://gipsy-oasis.jpl.nasa.gov

  101. G. Gendt, G. Dick, W. Soehne: GFZ analysis center of IGS – Annual report 1998. In: IGS 1998 Technical Reports, ed. by K. Goway, R. Neilan, A. Moore (JPL, Pasadena 1998) pp. 79–87

    Google Scholar 

  102. M. Ge, G. Gendt, G. Dick, F.P. Zhang, M. Rothacher: A new data processing strategy for huge GNSS global networks, J. Geod. 80(4), 199–203 (2006)

    Article  Google Scholar 

  103. J.C. Marty, S. Loyer, F. Perosanz, F. Mercier, G. Bracher, B. Legresy, L. Portier, H. Capdeville, F. Fund, J.M. Lemoine: GINS: The CNES/GRGS GNSS scientific software, Proc. 3rd Int. Coll. Sci. Fundam. Asp. Galileo Program., ESA WPP326, Copenhagen (ESA, Noordwijk 2011)

    Google Scholar 

  104. Q. Zhao, J. Guo, M. Li, L. Qu, Z. Hu, C. Shi, J. Liu: Initial results of precise orbit and clock determination for COMPASS navigation satellite system, J. Geod. 87(5), 475–486 (2013)

    Article  Google Scholar 

  105. MIT: GAMIT-GLOBK, http://www-gpsg.mit.edu/~simon/gtgk/

  106. W.G. Kass, R.L. Dulaney, J. Griffiths, S. Hilla, J. Ray, J. Rohde: Global GPS data analysis at the National Geodetic Survey, J. Geod. 83(3/4), 289–295 (2009)

    Article  Google Scholar 

  107. K. Dixon: StarFire: A global SBAS for sub-decimeter precise point positioning, Proc. ION GNSS 2006, Fort Worth (ION, Virginia 2006) pp. 2286–2296

    Google Scholar 

  108. Global Differential GNSS System, http://www.gdgps.net

  109. J. Tegedor, D. Lapucha, O. Ørpen, E. Vigen, T. Melgard, R. Strandli: The new G4 service: Multi-constellation precise point positioning including GPS, GLONASS, Galileo and BeiDou, Proc. ION GNSS+ 2015, Tampa (ION, Virginia 2015) pp. 1089–1095

    Google Scholar 

  110. E. Derbez, R. Lee: GPStream: A low bandwidth architecture to deliver or autonomously generate predicted ephemeris, Proc. ION GNSS 2008, Savannah (ION, Virginia 2008) pp. 1258–1264

    Google Scholar 

  111. M. Glocker, H. Landau, R. Leandro, M. Nitschke: Global precise multi-GNSS positioning with Trimble Centerpoint RTX, Proc. 6th ESA Workshop Satell. Navig. Technol. Eur. Workshop GNSS Signals Signal Proces. (NAVITEC), Noordwijk (IEEE, New York 2012), doi:10.1109/NAVITEC.2012.6423060

    Google Scholar 

  112. C. Rocken, L. Mervart, J. Johnson, Z. Lukes, T. Springer, T. Iwabuchi, S. Cummins: A new real-time global GPS and GLONASS precise positioning correction service: Apex, Proc. ION GNSS 2011, Portland (ION, Virginia 2011) pp. 1825–1838

    Google Scholar 

  113. Y. Feng, Y. Zheng: Efficient interpolations to GPS orbits for precise wide area applications, GPS Solut. 9(4), 273–282 (2005)

    Article  Google Scholar 

  114. IGS Analysis Strategy Summaries (2016) ftp://igs.org/pub/center/analysis

  115. G. Beutler, J. Kouba, T. Springer: Combining the orbits of the IGS analysis centers, Bull. Geod. 69, 200–222 (1995)

    Article  Google Scholar 

  116. J. Griffiths: Misalignment of the AC final orbits (2012) http://acc.igs.org/orbits/acc_report_final_rotations.pdf

  117. S. Desai, W. Bertiger, B. Haines, D. Kuang, C. Selle, A. Sibois, A. Sibthorpe, J. Weiss: JPL IGS analysis center report, 2005–2012, Int. GNSS Serv. Techn. Rep. 2011, Pasadena, ed. by M. Meindl, R. Dach, Y. Jean (IGS Central Bureau, Pasadena 2012) pp. 85–90

    Google Scholar 

  118. C. Garcia Serrano, L. Agrotis, F. Dilssner, J. Feltens, M. van Kints, I. Romero, T. Springer, W. Enderle: The ESA/ESOC analysis center progress and improvements, IGS Workshop 2014, Pasadena (IGS Central Bureau, Pasadena 2014)

    Google Scholar 

  119. T. Springer, M. Otten, C. Flohrer, F. Pereira, F. Gini, W. Enderle: GNSS satellite orbit modeling at ESOC, IGS Workshop 2014, Pasadena (IGS Central Bureau, Pasadena 2014)

    Google Scholar 

  120. J. Griffiths, J. Ray: On the precision and accuracy of IGS orbits, J. Geod. 83(3/4), 277–287 (2009)

    Article  Google Scholar 

  121. J. Griffiths, J.R. Ray: Sub-daily alias and draconitic errors in the IGS orbits, GPS Solut. 17(3), 413–422 (2012)

    Article  Google Scholar 

  122. C.J. Rodriguez-Solano, U. Hugentobler, P. Steigenberger, M. Bloßfeld, M. Fritsche: Reducing the draconitic errors in GNSS geodetic products, J. Geod. 88(6), 559–574 (2014)

    Article  Google Scholar 

  123. K. Sośnica, D. Thaller, R. Dach, P. Steigenberger, G. Beutler, D. Arnold, A. Jäggi: Satellite laser ranging to GPS and GLONASS, J. Geod. 89(7), 725–743 (2015)

    Article  Google Scholar 

  124. J. Kouba, T. Springer: New IGS station and satellite clock combination, GPS Solut. 4(4), 31–36 (2001)

    Article  Google Scholar 

  125. F.J. Gonzalez Martinez: Performance of New GNSS Satellite Clocks, Ph.D. Thesis (Karlsruher Institut für Technologie, Karlsruhe 2014)

    Google Scholar 

  126. K. Senior: Report of the IGS working group on clock products, 19th Meet. Consult. Comm. Time Freq., Sèvres (BIPM, Sèvres 2012) pp. 219–236

    Google Scholar 

  127. J. Ray: REMINDER: Switch to IGS08/igs08.atx on 17 April 2011 IGSMAIL-6384 (2011) https://igscb.jpl.nasa.gov/pipermail/igsmail/2011/007574.html

  128. J.R. Ray, J. Griffiths: Status of IGS orbit modeling and areas for improvement, Geophys. Res. Abstr. 13 (EGU, Vienna 2011) EGU2011-3774

    Google Scholar 

  129. S. Hilla: The Extended Standard Product 3 Orbit Format (SP3-c) (2010) https://igscb.jpl.nasa.gov/igscb/data/format/sp3c.txt

  130. J. Ray, W. Gurtner: RINEX Extensions to Handle Clock Information (2006) https://igscb.jpl.nasa.gov/igscb/data/format/rinex_clock300.txt

  131. J. Kouba, Y. Mireault: New IGS ERP Format (version 2), IGSMAIL-1943 (1998) https://igscb.jpl.nasa.gov/mail/igsmail/1998/msg00170.html

  132. M. Rothacher and R. Schmid: ANTEX: The Antenna Exchange Format, Version 1.4 (2010) https://igscb.jpl.nasa.gov/igscb/station/general/antex14.txt

  133. G. Gendt: IGS switch to absolute antenna model and ITRF2005, IGSMAIL-5438 (2006) https://igscb.jpl.nasa.gov/pipermail/igsmail/2006/005509.html

  134. G. Maral, M. Bousquet: Satellite Communications Systems: Systems, Techniques, and Technology, 5th edn. (Wiley, Chichester 2009)

    Book  Google Scholar 

  135. Radio Technical Commission for Maritime Services (RTCM): Differential GNSS (Global Navigation Satellite Systems) Services – Version 3 (2013)

    Google Scholar 

  136. S. Hackel, P. Steigenberger, U. Hugentobler, M. Uhlemann, O. Montenbruck: Galileo orbit determination using combined GNSS and SLR observations, GPS Solut. 19(1), 15–25 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Editors for their helpful reviews during the development of this chapter and Mathias Fritsche, Deutsches GeoForschungsZentrum Potsdam (GFZ) for providing information on orbit and clock combination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan P. Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weiss, J.P., Steigenberger, P., Springer, T. (2017). Orbit and Clock Product Generation. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_34

Download citation

Publish with us

Policies and ethics