Skip to main content

White and Brown Rot Fungi as Decomposers of Lignocellulosic Materials and Their Role in Waste and Pollution Control

  • Chapter
  • First Online:
Fungal Applications in Sustainable Environmental Biotechnology

Part of the book series: Fungal Biology ((FUNGBIO))

  • 1770 Accesses

Abstract

Along with bacteria, fungi contribute to essential ecological functions, such as recycling of organic carbon ‘trapped’ in cellulose and lignin, an ability that is the hallmark of white and brown rot fungi. The mycelium of some of these fungi produces digestive enzymes that speed up the breakdown of lignocellulosic wastes. In doing so, they promote the recycling of nutrients and help maintain the ecosystem equilibrium. Some fungi are parasites and mutualistic symbionts, and obtain their nutrients from living organisms. Others are saprotrophs, which rely on dead organisms for their nutrition. Among fungal saprotrophs, basidiomycete white and brown rot fungi are the main decomposers of lignocellulosic materials and will be the focus of this chapter. White and brown rot fungi are important contributors to mitigation of environmental pollution. They decompose lignocellulosic residues and wastes generated from agricultural and forestry operations, releasing the carbon stored in plant and wood cell walls. Collected residues, along with purposely grown energy crops, can be converted into value-added products, such as biofuels and novelty chemicals, and the application of white and brown rot fungi and their enzymes can significantly improve process efficiency. On the negative side, these fungi cause damage to wooden structures constructed for human use. However, the knowledge gained on the growth conditions, physiology, biochemistry and enzymology of white and brown rot fungi in an effort to minimise or control the damage caused by them to useful wooden structures is offering opportunities to employ these fungi and their enzymes to degrade a wide range of environmental contaminants and pollutants from industrial and other sources. The chapter will describe the processes of decomposition of lignocellulosic materials by white and brown rot fungi, and then highlight the advances being made in the application of these fungi and their enzymes in waste and pollution minimisation. Limitations to developing effective technologies will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Additional information on biofuel production is presented in Part IV—Biotehcnology to reduce reliance on fossil fuels: from biomass to biofuel of this book.

References

  • Abuhasan J, Pellinen J, Joyce TW, Chang H-M, 1988. Delignification of chemi-thermomechanical pulp by a fungal treatment. In: Proceedings of the AICHE annual meeting. New Developments in Pulp and Bleaching, Washington, DC, pp 1–7

    Google Scholar 

  • Akhtar M, Blanchette RA, Myers G, Kirk TK (1998) An overview of biomechanical pulping research. In: Young R, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 309–339

    Google Scholar 

  • Akhtar M, Scott GM, Sweney RE, Shipley DF (2000) Biochemical pulping: a mill-scale evaluation. Resour Conserv Recycl 28:241–252

    Article  Google Scholar 

  • Aktas N, Tanyolac A (2003) Reaction conditions for laccase catalysed polymerization of catechol. Bioresour Technol 87:209–214

    Article  CAS  PubMed  Google Scholar 

  • Arantes V, Jellison J, Goodell B (2012) Peculiarities of brown rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol 94:323–338

    Article  CAS  PubMed  Google Scholar 

  • Arantes V, Goodell B (2014) Current understanding of brown rot fungal biodegradation mechanisms: a review. In: Deterioration and protection of sustainable biomaterials (eds. Schultz et al.), ACS symposium series. American Chemical Society, Washington DC, pp 3–21

    Google Scholar 

  • Bajpai P, Bajpai PK, Akhtar M, Jauhari MB (2001) Biokraft pulping of eucalyptus with selected lignin-degrading fungi. J Pulp Pap Sci 27:235–242

    CAS  Google Scholar 

  • Bar-Lev SS, Kirk TK, Chang H-M (1982) Fungal treatment can reduce energy requirement for secondary refining of TMP. Tappi J 65:111–113

    CAS  Google Scholar 

  • Barbosa ES, Perrone D, Vendramini ALA, Leite SGF (2006) Vanillin production by Phanerochaete chrysosporium grown on green coconut agro-industrial husk in solid state fermentation. BioResources 3:1042–1050

    Google Scholar 

  • BBC Research Report (2011) BIO030 F enzymes in industrial applications: global markets. BBC Research, Wellesley, MA, USA

    Google Scholar 

  • Beatson RP, Zhang X, Stebbing D, Saddler JN (1999) The dissolved and colloid fractions of white water: impact on paper quality and degradation by enzymes. ISWPC, 7–10 June 1999, Yokohama, Japan

    Google Scholar 

  • Blanchette RA, Nilsson T, Daniel G, Abad A (1990) Biological degradation of wood. In: Archaeological wood: properties, chemistry and preservation (eds. Rowell RM, Barbour RJ), advances in chemistry 225. American Chemical Society, Washington DC, pp 141–174

    Google Scholar 

  • Blanchette RA (1995) Degradation of the lignocellulose complex in wood. Can J Bot 73:S999–1010

    Article  CAS  Google Scholar 

  • Buchert J, Mustranta A, Tamminen T, Spetz P, Holmbom B (2002) Modification of spruce lignans with Trametes hirsute lacasse. Holzforschung 56:579–584

    Article  CAS  Google Scholar 

  • Catcheside DEA, Mallet KL (1991) Solubilization of Australian lignites by fungi and other microorganisms. Energy Fuels 5:141–145

    Article  CAS  Google Scholar 

  • Chandra RP, Ragauskas AJ (2005) Modidfication of high lignin kraft pulps by laccase. Part 2. Xylanase-enhancedstrength benefits. Biotechnol Prog 21:1302–1306

    Article  CAS  PubMed  Google Scholar 

  • Clausen CA, Smith RL (1998) Removal of CCA from treated wood by oxalic acid extraction, steam explosion, and bacterial fermentation. J Indust Microbiol Biotechnol 20:251–257

    Article  CAS  Google Scholar 

  • Cowling EB (1961) Comparative biochemistry of the decay of sweetgum sapwood by white rot and brown rot fungi. USDA Tech Bull 1258

    Google Scholar 

  • Daniel G (2014) Fungal and bacterial biodegradation: white rots, brown rots, soft rots and bacteria. In: Deterioration and protection of sustainable biomaterials (eds. Schultz et al.), ACS symposium series. American Chemical Society, Washington DC, pp 23–58

    Google Scholar 

  • Daniel G (2015) Fungal degradation of wood cell walls. In: Secondary xylem biology: origins, functions and applications (eds. Kim YS, Funada R, Singh AP), Elsevier, Waltham, MA, USA. In press

    Google Scholar 

  • Decker P, Cohen B, Butala JH, Gordon T (2002) Exposure to wood dust and heavy metals in workers using CCA pressure-treated wood. AIHA J 63:166–171

    Article  Google Scholar 

  • Del Rio JC, Gutiérrez A, González-Vila FJ, Martin F (1999) Application of pyrolysis-gas chromatography-mass spectrometry to the analysis of pitch deposits and synthetic polymers in pulp and paper mills. J Anal Appl Pyrol 49:165–177

    Article  Google Scholar 

  • Dubé E, Shareck F, Hurtubise Y, Beauregard M, Daneault C (2008) Enzyme-based approaches for pitch control in thermomechanical pulping of softwood and pitch removal in process water. J Chem Technol Biotechnol 83:1261–1266

    Article  Google Scholar 

  • Eberhardt TL, Han JS, Micales JA, Young RA (1994) Decay resistance in conifer seed cones—role of resin acids as inhibitors of decomposition by white rot fungi. Holzforschung 48:278–284

    Article  CAS  Google Scholar 

  • Enoki A, Tanaka H, Fuse G (1988) Degradation of lignin-related compounds, pure cellulose and wood components by white rot and brown rot fungi. Holzforschung 42:85–93

    Article  CAS  Google Scholar 

  • Eriksson KE, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin

    Book  Google Scholar 

  • Faison BD (1991) Microbial conversions of low rank coals. Bio/Technology 9:951–956

    Article  CAS  Google Scholar 

  • Farrell RL, Blanchette RA, Brush TS, Hadar Y, Iverson S, Krisa K et al (1993) CartpipTM, a biopulping product for control of pitch and resin acid problems in pulp mills. J Biotechnol 1993(30):115–122

    Article  Google Scholar 

  • Gilbertson RL (1980) Wood rotting fungi of North America. Mycologia 72:1–49

    Article  Google Scholar 

  • Gokcay C, Kolankaya N, Dilek F (2001) Microbial solubilization of lignites. Fuel 80:1421–1433

    Article  CAS  Google Scholar 

  • Gutiérrez A, del Rio JC, Rencoret J, Ibarra D, Martinez AT (2006) Main lipophilic extractives in different paper pulp types can be removed using the laccase-mediater system. Appl Microbiol Biotechnol 72:845–851

    Article  PubMed  Google Scholar 

  • Gutiérrez A, del Rio JC, Martinez AT (2009) Microbial and enzymatic control of pitch in the pulp and paper industry. Appl Microbiol Biotechnol 82:1005–1018

    Article  PubMed  Google Scholar 

  • Haider R, Ghauri MA, Jones EJ, Orem WH, SamFilipo JR (2015) Structural degradation of Thar lignite using MWI fungal isolate: optimization studies. Int Biodeterior Biodegrad 100:149–154

    Article  CAS  Google Scholar 

  • Hatakka A, Hammel KE (2010) Fungal biodegradation of lignocellulosics. In: Hofrichter M (ed) Industrial applications: the mycota X. Springer-Verlag, Berlin, pp 319–340

    Google Scholar 

  • Hillis WE, Sumimoto M (1989) Effect of extractives on pulping. In: Rowe JW (ed) Natural products of woody plants: chemical extraneous to the lignocellulosic cell wall, vol 2. Springer-Verlag, Berlin, pp 880–920

    Chapter  Google Scholar 

  • Hofrichter M, Fritsche W (1997) Depolymerisation of low-rank coal by extracellular fungal enzyme systems. The ligninolytic enzymes of the coal-humic-acid-depolymerizing fungus Nematoloma frowardii B19. Appl Microbiol Biotechnol 47:419–424

    Article  CAS  Google Scholar 

  • Jamberck JR, Townsend T, Solo-Gabriele H (2006) Leaching of chromated copper arsenate (CCA)—treated wood in a simulated monofil and its potential impacts to landfill leachate. J Hazard Mater 135:21–31

    Article  Google Scholar 

  • Karlsson S, Holmbom B, Spetz P, Mustranta A, Buchert J (2001) Reactivity of Trametes laccases with fatty and resin acids. Appl Microbiol Biotechnol 55:317–320

    Article  CAS  PubMed  Google Scholar 

  • Kartal SN, Kose C (2003) Remediation of CCA-C treated wood using chelating agents. Holz Roh Werst 61:382–387

    Article  CAS  Google Scholar 

  • Kartal SN, Munir E, Kakitani T, Imamura Y (2004) Bioremediation of CCA-treated wood by brown rot fungi Fomitopsis palustris, Coniophora puteana, and Laetiporus sulphureus. J Wood Sci 50:182–188

    Article  CAS  Google Scholar 

  • Kim YS, Singh AP (2000) Micromorphological characteristics of wood biodegradation in wet environments: a review. IAWA J 21:135–155

    Article  Google Scholar 

  • Koenigs JW (1974) Production of hydrogen peroxide by wood rotting fungi in wood and its correlation with weight loss, depolymerisation and pH changes. Arch Microbiol 99:129–145

    Article  CAS  Google Scholar 

  • Kneževića A, Milovanovića I, Stajića M, Lončarb N, Brčeskib I, Vukojevića J et al (2013) Lignin degradation by selected fungal species. Bioresource Technol. 138:117–123

    Article  Google Scholar 

  • Leatham GF, Myers GC, Wegner TH (1990) Biomechanical pulping of aspen chips: energy savings resulting from different fungal treatments. Tappi J 73:197–200

    CAS  Google Scholar 

  • Lee J-W, Gwak K-S, Park J-Y, Park M-J, Choi D-H, Kwon M et al (2007) Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J Microbiol 45:485–491

    CAS  PubMed  Google Scholar 

  • Li G, Chen H (2014) Synergistic mechanism of steam explosion combined with fungal treatment by Phellinus baumii for the pretreatment of corn stalk. Biomass Bioenergy 67:1–7

    Article  CAS  Google Scholar 

  • Liu N, Qin M, Gao Y, Li Z, Fu Y, Xu Q (2012) Pulp properties and fiber characteristics of xylanase-treated aspen APMP. BioResources 7:3367–3377

    Google Scholar 

  • Mahara T, Hitomi I, Ichinose H, Furukawa T, Ogasawara W, Takabatake K et al (2013) Ethanol production from high cellulose concentration by the basidiomycete fungus Flammulina velutipes. Fungal Biol 117:220–226

    Article  Google Scholar 

  • Mansfield SD (2002) Laccase impregnation during mechanical pulp processing—improved refining efficiency and sheet strength. Appita J 55:49–53

    CAS  Google Scholar 

  • Mardones L, Gomide JL, Freer J, Ferraz A, Rodríguez J (2006) Kraft pulping of Eucalyptus nitens wood chips biotreated by Ceriporiopsis subvermispora. J Chem Technol Biotechnol 81:608–613

    Article  CAS  Google Scholar 

  • Mass RHW, Bakker RR, Eggink G, Weusthuis RA (2006) Lactic acid production from xylose by the fungus Rhizopus oryzae. Appl Microbiul Biotechnol 72(831–868):2006

    Google Scholar 

  • Martinez-Inigo MJ, Immerzeal P, Gutiérrez A, del Rio JC, Sierra-Alvarez R (1999) Biodegradability of extractives in sapwood and heartwood from Scots pine by sapstain and white rot fungi. Holzforschung 53:247–252

    Article  CAS  Google Scholar 

  • Mikolasch A, Schauer F (2009) Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 82:605–624

    Article  CAS  PubMed  Google Scholar 

  • Minussi RC, Pastore GM, Duran N (2002) Potential applications of laccase in the food industry. Trends Food Sci Technol 13:205–216

    Article  CAS  Google Scholar 

  • Munkittrick KR, Sandstrom O (2003) Eological assessment of pulp mill impacts: issues, concerns, myths, and research needs. In: Stuthridge TR, van den Heuvel MR, Marvin NA, Slade AH, Gifford J (eds) Environmental impacts of pulp and paper waste streams. SETAC Press, Pensacola, Florida, pp 352–362

    Google Scholar 

  • Ralph JP, Catcheside DE (1997) Transformations of low rank coal by Phanerochaete chrysosporium and other wood-rot fungi. Fuel Process Techn 52:79–93

    Article  CAS  Google Scholar 

  • Raghuwanshi S, Misra S, Saxena RK (2014) Treatment of wheat straw using tannase and white rot fungus to improve feed utilization by rumiants. J Anim Sci Biotechnol 5:1–18

    Article  Google Scholar 

  • Ray MJ, Leak DJ, Spanu PD, Murphy RJ (2010) Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production. Biomass Bioenergy 34:1257–1262

    Article  CAS  Google Scholar 

  • Rodriguez S, Toca JL (2006) Industrial and biotechnological applications of laccases: A review. Biotechnol Adv 24:500–513

    Article  Google Scholar 

  • Schubert M, Volkmer T, Lehringer C, Schwarze FWMR (2011) Resistance of bioincised wood treated with wood preservatives to blue-stain and wood-decay fungi. Int Biodeterorat Biodegrad 65:108–115

    Article  CAS  Google Scholar 

  • Sekhola ML, Igbinigie EE (2013) Cowan AK (2013) Biological degradation and solubilisation of coal. Biodegrad 24:305–318

    Article  Google Scholar 

  • Selinheimo E, Kruus K, Buchert J, Hopia A, Autio K (2006) Effect of laccase, xylanase and their combination on the rheological properties of wheat doughs. J Cereal Sci 42:152–159

    Article  Google Scholar 

  • Sergeeva YE, Galanina LA, Andrianova DA, Feofilova EP (2008) Lipids of filamentous fungi as a material for producing biodiesel fuel. Appl Biochem Microbiol 44:523

    Article  CAS  Google Scholar 

  • Sierra-Alvarez R (2009) Removal of copper, chromium and arsenic from preservative-treated wood by chemical extraction-fungal bioleaching. Waste Manag 29:1885–1891

    Article  CAS  PubMed  Google Scholar 

  • Singh AP (2012) A review of microbial decay types found in wooden objects of cultural heritage recovered from buried and waterlogged environments. J Cult Herit 13:S16–S20

    Article  Google Scholar 

  • Singh AP, Daniel G, Nilsson T (2002) High variability in the thickness of the S3 layer in Pinus radiata tracheids. Holzforschung 56:111–116

    Article  CAS  Google Scholar 

  • Singh AP, Kim YS, Singh T (2015) Bacterial degradation of wood cell walls. In: Kim YS, Funada R, Singh AP (eds) Secondary xylem biology: origins, functions and applications. Elsevier, Waltham, MA, USA, pp 169–190

    Google Scholar 

  • Singh T, Vaidya AA, Singh AP (2016) Improvement in the enzymatic hydrolysis of biofuel substrate by a combined thermochemical and fungal pretreatment. Wood Sci Technol. (In press)

    Google Scholar 

  • Sjöström E (1993) Wood chemistry, fundamentals and applications. Academic, San Diego

    Google Scholar 

  • Songulashvili G, Elisashvili V, Wasser SP, Nevo E, Hadar Y (2007) Basidiomycetes laccases and manganese peroxidase activity in submerged fermentation of food industry wastes. Enzym Micobial Technol 41:57–61

    Article  CAS  Google Scholar 

  • Strobel G, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M et al (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154:3319–3328

    Article  CAS  PubMed  Google Scholar 

  • Vaidya AA, Singh T (2012) Pre-treatment of P. radiata substrate by basidiomycetes fungi to enhance enzymatic hydrolysis. Biotechnol Lett 34:1263–1267

    Article  CAS  PubMed  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Phys 153:895–905

    Article  CAS  Google Scholar 

  • Viswanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G (2014) Fungal laccases and their applications in bioremediation. Enzym Res Article ID 163242, 21 p

    Google Scholar 

  • Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J et al (2011) A bacterium that can grow by using arsenic instead of phosphorus. Science 332:1163–1166

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Zhan H, Wang S, Fu S, Li K (2008) Modification of eucalyptus CTMP fibres with white rot fungus trametes hirsute—Effects on fibre morphology and paper physical strengths. Bioresour Technol 99:8118–8124

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Renaud S, Paice M (2005) The potential of laccase to remove extractives present in pulp and white water from TMP newsprint mills. J. Pulp Paper Sci. 31:175–180

    Google Scholar 

  • Zhang XY, Yu HB, Huang HY, Liu YX (2007) Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeter Biodegrad 60:159–164

    Article  CAS  Google Scholar 

  • Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68

    CAS  Google Scholar 

  • Zhi Z, Wang H (2014) White-rot fungal pretreatment of wheat straw with Phanerochaete chrysosporium for biohydrogen production: simultaneous saccharification and fermentation. Bioprocess Biosyst Eng 37:1447–1458

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tripti Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, T., Singh, A.P. (2016). White and Brown Rot Fungi as Decomposers of Lignocellulosic Materials and Their Role in Waste and Pollution Control. In: Purchase, D. (eds) Fungal Applications in Sustainable Environmental Biotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-42852-9_9

Download citation

Publish with us

Policies and ethics