Skip to main content

Nanotechnology for Crop Improvement

  • Chapter
  • First Online:
Plant Nanotechnology

Abstract

Nanotechnology has the potential to reinforce the mission toward evergreen revolution by enhancing agricultural productivity with limited inputs. It is emerging as a paradigm shift and evolving as a promising tool to begin a new era of precise farming techniques and therefore may provide a possible solution for crop improvement, even in challenging environments. Employment of engineered nanoparticles (ENPs), whether carbon- or metal-based, may be the future solution to increase crop production for feeding the fast-growing world population. This chapter provides an overview of the current knowledge on the effects of nanoparticles for crop improvement. Overriding influences of different carbon, metal-based and metal oxide nanoparticles on different growth parameters (number of seminal root initiation, root elongation, shoot length, number of seeds, flowers and its quality), ultimately leading to increased plant biomass and yield have been presented. Throughout this chapter, the beneficial role of nanoparticles through enhanced seed germination, increased root and shoot length, fruit and crop yield, and substantial increase in vegetative biomass of seedlings and plants in many crops including maize, wheat, alfalfa, soybean, mustard, mung bean, tomato, potato, lettuce, spinach, onion, peanut, borage, Arabidopsis, cluster bean, and bitter melon is highlighted. The experimental evidences for enhancement of secondary metabolites through nanoparticle treatment under in vivo and in vitro conditions are presented. Although implementation of nanotechnology for agriculture sustainability via enhanced yield, biomass, and secondary metabolite is at juvenile stage, world will witness exceptional and unparalleled prospective of nanoparticles for invigorating agriculture in many ways. It is evident that more investigations are urgently required to know the type of nanoparticle, size, concentration, and mode of application to enable its application on large scale for crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aditya N, Patnakar S, Madhusudan B, Murthy R, Souto E (2010) Artemether loaded lipid nanoparticles produced by modified thin film hydration: pharmacokinetics, toxicological and invivo antimalarial activity. Eur J Pharm Sci 40:448–455

    Article  CAS  PubMed  Google Scholar 

  • Al Sherbini A, Abd El-Gawad HG, Kamal MA, El-feky SA (2015) Potential of He-Ne laser irradiation and iron nanoparticles to increase growth and yield of pea. Amer-Euras J Agric Environ Sci 15(7):1435–1446

    Google Scholar 

  • Alidoust D, Isoda A (2013) Effect of gamma Fe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.)Merr.): foliar spray versus soil amendment. Acta Physiol Plant 35(12):3365–3375

    Article  CAS  Google Scholar 

  • Almeelbi T, Bezbaruah AN (2012) Aqueous phosphate removal using nanoscale zero-valent iron. J Nanopart Res 14:1497–1500

    Article  CAS  Google Scholar 

  • AL-Oubaidi HKM, Kasid NM (2015) Increasing (phenolyic and flavonoids compounds of Cicer arietinum L. from embryo explant using titanium dioxide nanoparticle in vitro. World J Pharmaceut Res 4(11):1791–1799

    Google Scholar 

  • Amuamuha L, Pirzad A, Hadi H (2012) Effect of varying concentrations and time of nanoiron foliar application on the yield and essential oil of Pot marigold. Int Res J Appl Basic Sci 3:2085–2090

    CAS  Google Scholar 

  • Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–339

    Article  CAS  Google Scholar 

  • Asghari GH, Mostajeran A, Sadeghi H, Nakhaei A (2012) Effect of salicylic acid and silver nitrate on taxol production in Taxus baccata. J Med Plants 11(8):74–82

    Google Scholar 

  • Ashrafi SJ, Rastegar MF, Jafarpour B, Kumar SA (2010) Possibility use of silvernano particle for controlling Fusarium wilting in plant pathology. In: Riberio C, de-Assis OBG, Mattoso LHC, Mascarenas S (eds) Symposium of international conference on food and agricultural applications of nanotechnologies, São Pedro SP, Brazil. ISBN 978-85-63274-02-4

    Google Scholar 

  • Aswathy Aromal S, Philip D (2012) Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta A Mol Biomol Spectrosc 97:1–5

    Article  CAS  PubMed  Google Scholar 

  • Bahreini M, Omidi M, Bondarian F, Gholibaygian M (2015) Metabolites screening of nano elicited in vitro Iranian fennel (Foeniculum vulgare). Am J Biol Life Sci 3(5):194–198

    Google Scholar 

  • Bakhtiari M, Moaveni P, Sani B (2015) The effect of iron nanoparticles spraying time and concentration on wheat. Biol Forum 7(1):679–683

    CAS  Google Scholar 

  • Baldi A, Dixit VK (2008) Yield enhancement strategies for artemisinin production by suspension culture of Artemisia annua. Bioresour Technol 99:4609–4614

    Article  CAS  PubMed  Google Scholar 

  • Barrena R, Casals E, Colon J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857

    Article  CAS  PubMed  Google Scholar 

  • Batsmanova LM, Gonchar LM, Taran NY, Okanenko AA (2013) Using a colloidal solution of metal nanoparticles as micronutrient fertiliser for cereals. In: Proceedings of the international conference on nanomaterials: applications and properties, Crimea, Ukraine, Proc NAP2, 04NABM14

    Google Scholar 

  • Billia AR, Flamini G, Tagioli V, Morelli I, Vincieri FF (2002) GC–MS analysis of essential oil of some commercial Fennel teas. Food Chem 76(3):307–310

    Article  Google Scholar 

  • Biswal SK, Nayak AK, Parida UK, Nayak PL (2012) Applications of nanotechnology in agriculture and food sciences. Int J Sci Innov Discov 2(1):21–36

    Google Scholar 

  • Brennan B (2012) Nanobiotechnology in agriculture. Strategic business insights 2012, Menlo Park, CA, USA, Available from: http://www.strategicbusinessinsights.com/about/featured/2012/2012-10-nanobio-agriculture.shtml. Accessed 18 Apr 2014

  • Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95(4):605–612

    Article  CAS  Google Scholar 

  • Cakmak I (2000) Role of zinc in protecting plant cells from reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Canas JE, long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionized single walled carbon nanotubes on root elongation of selected crop species. Nanomat Environ 27:1922–1931

    Google Scholar 

  • Chaouche T, Haddouchi F, Lazouni HA, Bekkara FA (2011) Phytochemical study of the plant Foeniculum vulgare Mill. Pharm Lett 3(2):329–333

    CAS  Google Scholar 

  • Chen HC, Roco MC, Son JB, Jiang S, Larson CA, Gao Q (2013) Global nanotechnology development from 1991 to 2012: patents, scientific publications, and effect of NSF funding. J Nanopart Res 15:1951

    Article  Google Scholar 

  • Choi HK, Yun JH, Kim SL, Son JS, Kim HR, Kim JH, Choi HJ, Hong SS (2001) Enhanced production of paclitaxel by semi-continuous batch process (SCBP) in suspension culture of Taxus chinensis. Enzyme Microb Technol 29:583–586

    Article  CAS  Google Scholar 

  • Chutipaijit S (2015) Establishment of condition and nano particle factors influencing plant regeneration from aromatic rice (Oryza sativa). Int J Agric Biol 17:1049–1054

    CAS  Google Scholar 

  • Deltito J, Beyer D (1998) The scientific, quasi-scientific and popular literature on the use of St. John’s Wort in the treatment of depression. Affect Disord 51:245–251

    Article  Google Scholar 

  • Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nano particles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3(1):1–5

    Article  CAS  Google Scholar 

  • Dias ACP, Tomas-Barberan FA, Fernandes-Ferreira M, Ferreas F (1998) Unusual flavonoids produced by callus culturesof Hypericum perforatum. Phytochemistry 48:1156–1168

    Article  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1–15

    Article  CAS  Google Scholar 

  • Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci Nanosci Nanotechnol 3(3):033002

    Article  CAS  Google Scholar 

  • Dofing SM (1995) Phenological development-yield relationships in spring barley in a subarctic environment. Can J Plant Sci 75:93–97

    Article  Google Scholar 

  • Fakruddin MD, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnol 10:1–8

    Article  CAS  Google Scholar 

  • Feizi H, Kamali M, Jafari L, RezvaniMoghaddam P (2013) Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91(4):506–511

    Article  CAS  PubMed  Google Scholar 

  • Ferreira JFS, Simon JE, Janick J (1995) Developmental studies of Artemisia annua: flowering and artemisinin production under greenhouse and field conditions. Planta Med 61:167–170

    Article  CAS  PubMed  Google Scholar 

  • Frewer LJ, Norde W, Fischer ARH, Kampers FWH (2011) Nanotechnology in the agri-food sector: implications for the future. Wiley-VCH Weinheim, Germany. ISBN 9783527330607 p 328

    Google Scholar 

  • Galbraith DW (2007) Nanobiotechnology: silica breaks through in plants. Nat Nanotechnol 2:272–273

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2008) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem Res J 111:239–253

    Article  Google Scholar 

  • Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540

    Article  CAS  PubMed  Google Scholar 

  • Ghanati F, Bakhtiarian S (2014) Effect of methyl jasmonate and silver nanoparticles on production of secondary metabolites by Calendula officinalis L (Asteraceae). Trop J Pharmaceut Res 13(11):1783–1789

    Article  CAS  Google Scholar 

  • Ghasemi B, Hosseini R, Nayeri FD (2015) Effects of cobalt nanoparticles on artemisinin production and gene expression in Artemisia annua. Turk J Bot 39:769–777

    Article  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, Mc Nicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Jacqueline AB, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-melendi P, Fernandez-pacheco R, Coronado MJ, Corredor E, Testillano PS, Risuno MC, Marquina C, Ibarra MR, Rubiales D, Perez-de-luque A (2008) Nanoparticles as smart treatment-delivery systems in plant: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195

    Article  CAS  PubMed  Google Scholar 

  • Gopinath K, Gowri S, Karthika V, Arumugam A (2014) Green synthesis of gold nanoparticles from fruit extract of Terminaliaarjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostruct Chem 4:1–11

    Google Scholar 

  • Gruère G, Narrod C, Abbott L (2011) Agriculture, food, and water nanotechnologies for the poor: opportunities and constraints. Policy Brief 19. International Food Policy Research Institute, Washington DC

    Google Scholar 

  • Gurdip S, Maurya S, de Lampasona MP, Catalan C (2006) Chemical constituents, antifungal and antioxidative potential of Foeniculum vulgare volatile oil and its acetone extract. Food Control 17:745–752

    Article  CAS  Google Scholar 

  • Hafeez A, Razzaq A, Mahmood T, Jhanzab HM (2015) Potential of copper nanoparticles to increase growth and yield of wheat. J Nanosci Adv Technol 1(1):6–11

    Google Scholar 

  • Haghighi M, Afifipour Z, Mozafarian M (2012) The alleviation effect of silicon on seed germination and seedling growth of tomato under salinity stress. Veg Crops Res Bull 76(119):126

    Google Scholar 

  • Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Ahamed KU, Khalequzzaman KM, Shamsuzzaman AMM, Nahar K (2008) Plant characteristics, growth and leaf yield of Aloe vera L. as affected by organic manure in pot culture. Aust J Crop Sci 2(3):158–163

    Google Scholar 

  • Heiras-Palazuelos MJ, Ochoa-Lugo MI, Gutierrez-Dorado R, Lopez Valenzuela JA, Mora-Rochin S, Milan Carrillo J et al (2013) Technological properties, antioxidant activity and total phenolic and flavonoid content of pigmented chickpea (Cicer arietinum L.) cultivars. Int J Food Sci Nutr 64:69–76

    Article  CAS  PubMed  Google Scholar 

  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279

    Article  CAS  PubMed  Google Scholar 

  • Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plants system. J Nanotechnol 12:1–10

    Google Scholar 

  • Jaberzadeh A, Moaveni P, Tohidi Moghadam HR, Zahedi H (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Horti Agrobot 41(1):201–207

    CAS  Google Scholar 

  • Jayarambabu N, kumari BS, Rao KV, Prabhu YT (2015) Beneficial role of zinc oxide nanoparticles on green crop production. Int J Adv Multi Res Trends 2(1):273–282

    Google Scholar 

  • Kabera JN, Semana E, Mussa AR, He X (2014) Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2:377–392

    Google Scholar 

  • Karuppanapandian T, Wang HW, Prabakaran N, Jeyalakshmi K, Kwon M, Manoharan K, Kim W (2011) 2, 4-dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vignaradiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles. Plant Physiol Biochem 49(2):168–177

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaka M, Abbasi BH, Rahman LU, Shah A (2016) Seed germination and biochemical profile of Silybum marianum exposed to monometallic and bimetallic alloy nanoparticles. IET Nanobiotechnol. doi:10.1049/iet-nbt.2015.0050

    Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108:1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, Kim B-S, Kim JN et al (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123

    Article  CAS  PubMed  Google Scholar 

  • Kisan B, Shruthi H, Sharanagouda H, Revanappa SB, Pramod NK (2015) Effect of nano-zinc oxide on the leaf physical and nutritional quality of spinach. Agrotechnology 5:135. doi:10.4172/2168-9881.1000135

    Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handry RD, Lyon DY, Manendra S, McKaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  PubMed  Google Scholar 

  • Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 47:651–658

    Article  CAS  Google Scholar 

  • Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468

    Article  PubMed  CAS  Google Scholar 

  • Kumari M, Mukherhjee A, Chandrasekaran N (2009) Genotoxicity of silver nano particles in Allium cepa. Sci Total Environ 407:5243–5246

    Article  CAS  PubMed  Google Scholar 

  • Laware SL, Raskar S (2014) Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. Int J Curr Microbiol Appl Sci 3(7):874–881

    CAS  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    Article  CAS  PubMed  Google Scholar 

  • Lee WL, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Chung HI, Kim SY, Lee IS (2012) Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ Sci Pollut Res 20(2):848–854

    Article  CAS  Google Scholar 

  • Lee SY, Chung HI, Kim SY, Lee IS (2013) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut 224:1668

    Article  CAS  Google Scholar 

  • Lei C, Ma D, Pu G, Qiu X, Du Z, Wang H, Li G, Ye H, Liu B (2011) Foliar application of chitosan activates artemisinin biosynthesis in Artemisia annua L. Ind Crop Prod 33:176–182

    Article  CAS  Google Scholar 

  • Li P, Chen J, Wu P (2011) Agronomic characteristics and grain yield in 30 spring wheat genotypes under drought stress and nonstress conditions. Agron J 103:1619–1628

    Article  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132

    Article  CAS  PubMed  Google Scholar 

  • Linglan M, Chao L, Chunxiang Q, Sitao Y, Jie L, Fengqing G, Fashui H (2008) Rubiscoactivase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122(2):168–178

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  PubMed  Google Scholar 

  • Liu XM, Zhang FD, Zhang SQ, He XS, Fang R, Feng Z, Wang Y (2005) Effects of nano-ferric oxide on the growth and nutrients absorption of peanut. Plant Nutr Fert Sci 11:14–18

    Google Scholar 

  • Liu X, Feng Z, Zhang S, Zhang J, Xiao Q, Wang Y (2006) Preparation and testing of cementing nano-sub nano composites of slow or controlled release of fertilizers. Sci Agri Sin 39:1598–1604

    CAS  Google Scholar 

  • Liu S, Yuan L, Yue X, Zheng Z, Tang Z (2008) Recent advances in nanosensors for organophosphate pesticide detection. Adv Powder Technol 19:419–441

    Article  CAS  Google Scholar 

  • Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227:42–54

    Article  CAS  Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010) XAS corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58(6):3689–3693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–172

    CAS  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram(Cicer arietinum) seedlings using plant agar method. J Nanotechnol Article ID 696535, 7 pages

    Google Scholar 

  • Malakouti MJ, Tehrani MM (2005) The role of micronutrients in yield increasing and improving quality of agricultural products, 3rd edn. Tarbiyat Modarres University, Tehran, pp 273–279

    Google Scholar 

  • Marchiol L, Mattiello A, Pošćić F, Fellet G, Zavalloni C, Carlino E, Musett R (2016) Changes in physiological and agronomical parameters of barley (Hordeum vulgare) exposed to cerium and titanium dioxide nanoparticles. Int J Environ Res Public Health 13:332–350

    Google Scholar 

  • Menke F, Champion A, Kijne J, Memelink J (2009) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate and elicitor-inducible AP2-domain transcription factor, ORCA2. Eur Mol Biol Org 18:4455–4463

    Google Scholar 

  • Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance: biological techniques, vol 1., Elsevier Academic PressNew York, USA, pp 159–180

    Chapter  Google Scholar 

  • Mondal A, Basu R, Das S, Nandi P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13:4519–4528

    Article  CAS  Google Scholar 

  • Morales MI, Rico CM, Hernandez-Viezcas JA, Nunez JE, Barrios AC, Tafoya A, Flores-Marges JP, Peralta-Videa JR, Gardea-Torresdey JL (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61:6224–6230

    Article  CAS  PubMed  Google Scholar 

  • Morteza E, Moaveni P, Farahani HA, Kiyani M (2013) Study of photosynthetic pigments changes ofmaize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springer Plus 2(1):247

    Google Scholar 

  • Mulabagal V, Tsay HS (2004) Plant cell cultures–an alternative and efficient source for the production of biologically important secondary metabolites. Int J Appl Sci Eng 2:29–48

    Google Scholar 

  • Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agri Crop Sci 5(19):2229–2232

    Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Najafi S, Jamei R (2014) Effect of silver nanoparticles and Pb(NO3)2 on the yield and chemical composition of mung bean (Vigna radiata). J Stress Physiol Biochem 10:316–325

    Google Scholar 

  • Nanotechnology in Agriculture and Food (2006) European nanotechnology gateway. http://www.nanoforum.org/dateien/temp/nanotechnology%20in%20agriculture%20-and%20food.pdf

  • Nejatzadeh-Barandozi F, Darvishzadeh F, Aminkhani A (2014) Effect of nano silver and silver nitrate on seed yield of (Ocimum basilicum L.). Organic Med Chem Lett 4(1):1–6

    Google Scholar 

  • Ngo QB, Dao TH, Nguyen HC, TranXT Nguyen TV, Khuu TD, Huynh TH (2014) Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Adv Nat Sci Nanosci Nanotechnol 5:1–7

    Article  CAS  Google Scholar 

  • Panwar J, Jain N, Bhargaya A, Akthar MS, Yun YS (2012) Positive effect of zinc oxide nanoparticles on tomato plants: a step towards developing “nano-fertilizers”. In: 3rd international conference on environmental research and technology, pp 348–352

    Google Scholar 

  • Patra P, Choudhury SR, Mandal S, Basu A, Goswami A, Gogoi R, Srivastava C, Kumar R, Gopal M (2013) Effect of sulfur and ZnO nanoparticles on stress physiology and plant (Vigna radiata) nutrition. In: Giri PK, Goswami DK, Perumal A (eds) Advanced nanomaterials and nanotechnology. Springer, Berlin, pp 301–309

    Chapter  Google Scholar 

  • Pérez-de-Luque A, Hermosín MC (2013) Nanotechnology and its use in agriculture. In: Bagchi D, Bagchi M, Moriyama H, Shahidi F (eds) Bio-nanotechnology: a revolution in food, biomedical and health sciences. Wiley-Blackwell, West Sussex, pp 299–405

    Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332

    Article  PubMed  CAS  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TSP, Sajanlal R, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

    Article  CAS  Google Scholar 

  • Racuciu M, Creanga D (2007) TMA-OH coated magnetic nanoparticles internalize in vegetal tissue. Rom J Phys 52:395–402

    CAS  Google Scholar 

  • Raei M, Angaji SA, Omidi M, Khodayari M (2014) Effect of abiotic elicitors on tissue culture of Aloe vera. Int J Biosci 5(1):74–81

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2(1):48–57

    Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  PubMed  Google Scholar 

  • Razzaq A, Ammara R, Jhanzab HM, Mahmood T, Hafeez A, Hussain S (2016) A novel nanomaterial to enhance growth and yield of wheat. J Nanosci Technol 2(1):55–58

    Google Scholar 

  • Reynolds T (2004) Aloe chemistry. In: Reynolds T (ed) The genus Aloe. CRC Press, Boca Raton, pp 39–74

    Google Scholar 

  • Rico CM, Lee SC, Rubenecia R, Mukherjee A, Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). J Agric Food Chem 62:9669–9675

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Barrios AC, Tan W, Rubenecia R, Lee SC, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res. doi:10.1007/s11356-015-4243

    Google Scholar 

  • Salama HMH (2012) Effects of silver nanoparticles in some crop plants, Common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3(10):190–197

    Google Scholar 

  • Scott N, Chen H (2002) Nanoscale science and engineering for agriculture and food systems. National planning workshop, 18–19 Nov 2002, Washington DC, USA. Available from: http://www.nseafs.cornell.edu/web.roadmap.pdf

  • Seif SM, Sorooshzadeh A, Rezazadehs H, Naghdibadi HA (2011) Effect of nanosilver and silver nitrate on seed yield of borage. J Med Plants Res 5(2):171–175

    Google Scholar 

  • Serag MF, Kaji N, Venturelli E, Okamoto Y, Terasaka K, Tokeshi M, Mizukami H, Ugent KB, Bianco A, Baba Y (2011a) A functional platform for controlled subcellular distribution of carbon nanotubes. ACS Nano 5:9264–9270

    Article  CAS  PubMed  Google Scholar 

  • Serag MF, Kaji N, Venturelli E, Okamoto Y, Terasaka K, Tokeshi M, Mizukami H, Ugent KB, Bianco Baba Y (2011b) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5:493–499

    Article  CAS  PubMed  Google Scholar 

  • Serag MF, Kaji N, Tokeshi M, Baba Y (2012a) Introducing carbon nano tubes into living walled plant cells through cellulase-induced nanoholes. RSC Adv 2:398–400

    Article  CAS  Google Scholar 

  • Serag MF, Braeckmans K, Habuchi S, Kaji N, Bianco A, Baba Y (2012b) Spatiotemporal visualization of subcellular dynamics of carbon nanotubes. Nano Lett 12:6145–6151

    Article  CAS  PubMed  Google Scholar 

  • Serag MF, Kaji N, Habuchi S, Bianco A, Baba Y (2013) Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Adv 3:4856–4862

    Article  CAS  Google Scholar 

  • Servin A, Elmer W, Mukherjee A, Torre-Roche RD, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:92–112

    Article  CAS  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148

    Article  CAS  Google Scholar 

  • Shakeran Z, Keyhanfar M,  Asghari G, Ghanadian M (2015) Improvement of atropine production by different biotic and abiotic elicitors in hairy root cultures of Datura metel. Turk J Biol 39:111–118

    Google Scholar 

  • Sharafi E, Nekoei SMK, Fotokian MH, Davoodi D, Mirzaei HH, Hasanloo T (2013) Improvement of hypericin and hyperforin production using zinc and iron nano-oxides as elicitors in cell suspension culture of St John’s wort (Hypericum perforatum L.). J Med Plants By-prod 2:177–184

    Google Scholar 

  • Sharma P, Bhatt D, Zaidi MG, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233

    Article  CAS  PubMed  Google Scholar 

  • Sharon M, Choudhry A, Kumar R (2010) Nanotechnology in agricultural disease and food safety. J Phytol 2:83–92

    Google Scholar 

  • Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2:112–113

    Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21:13–17

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437

    Article  CAS  PubMed  Google Scholar 

  • Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonkaria S, Ahn SH, Khare V (2012) Nanotechnology and its impact on food and nutrition: a review. Recent Pat Food Nutr Agric 4(1):8–18

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan C, Saraswathi R (2010) Nano-agriculture-carbon nanotubes enhance tomato seed germination and plant growth. Curr Sci 99:273–275

    Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Sugunan A, Dutta J (2008) Pollution treatment, remediation and sensing. In: Harald K (ed) Nanotechnology, vol 3. Wiley-VCH, Weinheim, pp 125–143

    Google Scholar 

  • Tahmasbi D, Zarghami R, Azghandi AV, Chaichi M (2011) Effects of nanosilver and nitroxin biofertilizer on yield and yield components of potato minitubers. Int J Agric Biol 13:986–990

    Google Scholar 

  • Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9:289

    Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Villasenor Cendejas LM, Villegas J, Carreto Montoya L, Borjas Garcia SE (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 2:577–591

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Vakhrouchev AV, Golubchikov VB (2007) Numerical investigation of the dynamics of nanoparticle systems in biological processes of plant nutrition. J Phy Conf Sr 61:31–35

    Article  CAS  Google Scholar 

  • Villagarcia H, Dervishi E, Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8:2328–2334

    Article  CAS  PubMed  Google Scholar 

  • Welch RM, Webb MJ, Loneragan JF (1982) Zinc in membrane function and its role in phosphorus toxicity. In: Scaife A (ed) Proceedings of the ninth plant nutrition colloquium. CAB International, Wallingford, UK, pp 710–715

    Google Scholar 

  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Liu C, Gao F, Su M, Wu X, Zheng L et al (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. BiolTrace Elem Res 119:77–88

    Google Scholar 

  • Yarizade K, Hosseini R (2015) Expression analysis of ADS, DBR2, ALDH1 and SQS genes in Artemisia vulgaris hairy root culture under nano cobalt and nano zinc elicitation. Ext J App Sci 3(3):69–76

    Google Scholar 

  • Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M et al (2011) More than the ions: the effect of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367

    Article  CAS  PubMed  Google Scholar 

  • Yugandhar P, Savithramma N (2013) Green synthesis of calcium carbonate nanoparticles and their effects on seed germination and seedling growth of Vigna mungo (L.) Hepper. Int J Adv Res 1(8):89–103

    Google Scholar 

  • Yuvakumar R, Elango V, Rajendran V, Kannan NS, Prabu P (2011) Influence of nanosilica powder on the growth of maize crop (Zea mays L.). Int J Green Nanotechnol 3(1):180–190

    Google Scholar 

  • Zhang C, Yan Q, Cheuk WK, Wu J (2004) Enhancement of tanshinone production in Salvia miltiorrhiza hairy root culture by Ag+ elicitation and nutrient feeding. Planta Med 70(2):147–151

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Zheng LP, Yi Li W, Wen Wang J (2013) Stimulation of artemisinin production in Artemesia annua hairy roots by Ag-SiO2 core shell nanoparticles. Curr Nanosci 9:363–370

    Article  CAS  Google Scholar 

  • Zhao DX, Fu CX, Han YS, Lu DP (2005a) Effects of elicitation on jaceosidin and hispidulin production in cell suspension cultures of Saussurea medusa. Process Biochem 40(2):739–745

    Article  CAS  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005b) Elicitor signal transduction leading to production of secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  PubMed  Google Scholar 

  • Zhao JL, Zhou LG, Wu JY (2010) Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures. Appl Microbiol Biotechnol 87:137–144

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Element Res 104:83–91

    Article  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pragati Misra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Misra, P., Shukla, P.K., Pramanik, K., Gautam, S., Kole, C. (2016). Nanotechnology for Crop Improvement. In: Kole, C., Kumar, D., Khodakovskaya, M. (eds) Plant Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-42154-4_9

Download citation

Publish with us

Policies and ethics