Skip to main content

Abstract

Zebrafish are becoming increasingly utilized in behavioral studies as a model of human learning and memory. The existing studies indicate that this species is capable of a variety of cognitive processes, demonstrating its value as a model organism. Popular zebrafish behavioral paradigms to assess various aspects of learning and memory include the startle response, novel tank, learned spatial alternation, three-chamber tank, T-maze and plus maze. Each paradigm is sensitive to pharmacological, genetic and/or experimental manipulations, and within each test specific methodologies and apparatuses have been developed to accommodate the abilities and limitations of this aquatic model, as reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spear NE, Miller JS, Jagielo JA. Animal memory and learning. Annu Rev Psychol. 1990;41(1):169–211.

    Article  CAS  PubMed  Google Scholar 

  2. Dudai Y. The neurobiology of memory: concepts, findings, trends. New York: Oxford University Press; 1989.

    Google Scholar 

  3. Bilotta J, Risner ML, Davis EC, Haggabloom SJ. Assessing appetitive choice discrimination learning in zebrafish. Zebrafish. 2005;2(4):259–68.

    Article  PubMed  Google Scholar 

  4. Colwill RM, Raymond MP, Ferreira L, Escudero H. Visual discrimination learning in zebrafish (Danio rerio). Behav Processes. 2005;70(1):19–31. doi:10.1016/j.beproc.2005.03.001.

    Article  PubMed  Google Scholar 

  5. Gaikwad S, Stewart A, Hart P, Wong K, Piet V, Cachat J, Kalueff AV. Acute stress disrupts performance of zebrafish in the cued and spatial memory tests: the utility of fish models to study stress-memory interplay. Behav Processes. 2011;87(2):224–30. doi:10.1016/j.beproc.2011.04.004.

    Article  PubMed  Google Scholar 

  6. Ninkovic J, Bally-Cuif L. The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods. 2006;39(3):262–74. doi:10.1016/j.ymeth.2005.12.007.

    Article  CAS  PubMed  Google Scholar 

  7. Sison M, Gerlai R. Associative learning in zebrafish (Danio rerio) in the plus maze. Behav Brain Res. 2010;207(1):99–104. doi:10.1016/j.bbr.2009.09.043.

    Article  PubMed  Google Scholar 

  8. Best JD, Berghmans S, Hunt JJ, Clarke SC, Fleming A, Goldsmith P, Roach AG. Non-associative learning in larval zebrafish. Neuropsychopharmacology. 2008;33(5):1206–15. doi:10.1038/sj.npp.1301489.

    Article  CAS  PubMed  Google Scholar 

  9. Chanin S, Fryar C, Varga D, Raymond J, Kyzar E, Enriquez J, et al. Assessing startle responses and their habituation in adult zebrafish. In: Zebrafish protocols for neurobehavioral research. New York: Springer; 2012. p. 287–300.

    Google Scholar 

  10. Atkinson RC, Shiffrin RM. Human memory: a proposed system and its control processes. In: Spence KW, Spence JT, editors. Psychology of learning and motivation, vol. 2. New York, NY: Academic; 1968. p. 89–195.

    Google Scholar 

  11. Karami NR. Explicit and implicit memory. Advances in cognitive science. 2002;3(4):57–65.

    Google Scholar 

  12. Koob GF, Le Moal M, Thompson RF. Encyclopedia of behavioral neuroscience, three-volume set, 1–3: online version. Oxford: Newnes; 2010.

    Google Scholar 

  13. Banks WP. Encyclopedia of consciousness, vol. 1. San Diego: Academic Press; 2009.

    Google Scholar 

  14. Squire LR. Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem. 2004;82(3):171–7.

    Article  PubMed  Google Scholar 

  15. Wong K, Elegante M, Bartels B, Elkhayat S, Tien D, Roy S, et al. Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav Brain Res. 2010;208(2):450–7. doi:10.1016/j.bbr.2009.12.023.

    Article  CAS  PubMed  Google Scholar 

  16. Harris JD. Habituatory response decrement in the intact organism. Psychol Bull. 1943;40:385–422.

    Article  Google Scholar 

  17. Castellucci V, Pinsker H, Kupfermann I, Kandel ER. Neuronal mechanisms of habituation and dishabituation of the gill-withdrawal reflex in aplysia. Science. 1970;167:1745–8.

    Article  CAS  PubMed  Google Scholar 

  18. Thompson RF, Spencer WA. Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev. 1966;73(1):16–43.

    Article  CAS  PubMed  Google Scholar 

  19. Rankin CH, Abrams T, Barry RJ, Bhatnagar S, Clayton DF, Colombo J, et al. Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol Learn Mem. 2009;92(2):135–8. doi:10.1016/j.nlm.2008.09.012.

    Article  PubMed  Google Scholar 

  20. Crawley JN. What’s wrong with my mouse? Behavioral phenotyping of transgenic and knockout mice. New York: Wiley-Liss; 2000.

    Google Scholar 

  21. Eddins D, Cerutti D, Williams P, Linney E, Levin ED. Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: comparison with nicotine and pilocarpine effects and relationship to dopamine deficits. Neurotoxicol Teratol. 2010;32(1):99–108. doi:10.1016/j.ntt.2009.02.005.

    Article  CAS  PubMed  Google Scholar 

  22. Levin ED, Bencan Z, Cerutti DT. Anxiolytic effects of nicotine in zebrafish. Physiol Behav. 2007;90(1):54–8. doi:10.1016/j.physbeh.2006.08.026.

    Article  CAS  PubMed  Google Scholar 

  23. Stewart AM, Grossman L, Collier AD, Echevarria DJ, Kalueff AV. Anxiogenic-like effects of chronic nicotine exposure in zebrafish. Pharmacol Biochem Behav. 2015;139(Pt B):112–20.

    Article  CAS  PubMed  Google Scholar 

  24. Grossman L, Stewart A, Gaikwad S, Utterback E, Wu N, Dileo J, et al. Effects of piracetam on behavior and memory in adult zebrafish. Brain Res Bull. 2011;85(1–2):58–63. doi:10.1016/j.brainresbull.2011.02.008.

    Article  CAS  PubMed  Google Scholar 

  25. Carvan 3rd MJ, Loucks E, Weber DN, Williams FE. Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicol Teratol. 2004;26(6):757–68. doi:10.1016/j.ntt.2004.06.016.

    Article  CAS  PubMed  Google Scholar 

  26. Eddins D, Petro A, Williams P, Cerutti DT, Levin ED. Nicotine effects on learning in zebrafish: the role of dopaminergic systems. Psychopharmacology (Berl). 2009;202(1–3):103–9. doi:10.1007/s00213-008-1287-4.

    Article  CAS  Google Scholar 

  27. Levin ED, Chen E. Nicotinic involvement in memory function in zebrafish. Neurotoxicol Teratol. 2004;26(6):731–5. doi:10.1016/j.ntt.2004.06.010.

    Article  CAS  PubMed  Google Scholar 

  28. Swain HA, Sigstad C, Scalzo FM. Effects of dizocilpine (MK-801) on circling behavior, swimming activity, and place preference in zebrafish (Danio rerio). Neurotoxicol Teratol. 2004;26(6):725–9. doi:10.1016/j.ntt.2004.06.009.

    Article  CAS  PubMed  Google Scholar 

  29. Yang S, Kim W, Choi BH, Koh HY, Lee CJ. Alcohol impairs learning of T‐maze task but not active avoidance task in zebrafish. Kor J Biol Sci. 2003;7(4):303–7.

    Article  Google Scholar 

  30. Grossman L, Utterback E, Stewart A, Gaikwad S, Chung KM, Suciu C, et al. Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res. 2010;214(2):277–84.

    Article  CAS  PubMed  Google Scholar 

  31. Doguc DK, Delibas N, Vural H, Altuntas I, Sutcu R, Sonmez Y. Effects of chronic scopolamine administration on spatial working memory and hippocampal receptors related to learning. Behav Pharmacol. 2012;23(8):762–70.

    Article  CAS  PubMed  Google Scholar 

  32. Frussa-Filho R, de Lima Patti C, Fukushiro DF, Ribeiro LTC, Kameda SR, de Cassia Carvalho R. The plus-maze discriminative avoidance task: an ethical rodent model for concomitant evaluation of learning, memory, anxiety, motor activity and their interactions. Rodent model as tools in ethical biomedical research. Cham: Springer; 2016. p. 327–44.

    Google Scholar 

  33. Bailey JM, Oliveri AN, Levin ED. Pharmacological analyses of learning and memory in zebrafish (Danio rerio). Pharmacol Biochem Behav. 2015;139(Pt B):103–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blaser R, Vira D. Experiments on learning in zebrafish (Danio rerio): a promising model of neurocognitive function. Neurosci Biobehav Rev. 2014;42:224–31.

    Article  CAS  PubMed  Google Scholar 

  35. Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci. 2014;35(2):63–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tran S, Chatterjee D, Gerlai R. An integrative analysis of ethanol tolerance and withdrawal in zebrafish (Danio rerio). Behav Brain Res. 2015;276:161–70.

    Article  CAS  PubMed  Google Scholar 

  37. Toms CN, Echevarria DJ. Back to basics: searching for a comprehensive framework for exploring individual differences in zebrafish (Danio rerio) behavior. Zebrafish. 2014;11(4):325–40.

    Article  PubMed  Google Scholar 

  38. Way GP, Ruhl N, Snekser JL, Kiesel AL, McRobert SP. A comparison of methodologies to test aggression in zebrafish. Zebrafish. 2015;12(2):144–51.

    Article  PubMed  Google Scholar 

  39. Parker MO, Annan LV, Kanellopoulos AH, Brock AJ, Combe FJ, Baiamonte M, et al. The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development. Prog Neuropsychopharmacol Biol Psychiatry. 2014;55:94–100.

    Article  CAS  PubMed  Google Scholar 

  40. Qin M, Wong A, Seguin D, Gerlai R. Induction of social behavior in zebrafish: live versus computer animated fish as stimuli. Zebrafish. 2014;11(3):185–97.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Roberts AC, Bill BR, Glanzman DL. Learning and memory in zebrafish larvae. Front Neural Circuits. 2013;7:126.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Echevarria DJ, Hammack CM, Pratt DW, Hosemann JD. A novel behavioral test battery to assess global drug effects using the zebrafish. Int J Comp Psychol. 2008;21:19–34.

    Google Scholar 

  43. Braida D, Limonta V, Pegorini S, Zani A, Guerini-Rocco C, Gori E, Sala M. Hallucinatory and rewarding effect of salvinorin A in zebrafish: k-opioid and CB1-cannabinoid receptor involvement. Psychopharmacology (Berl). 2007;190(4):441–8.

    Article  CAS  Google Scholar 

  44. Kinkel MD, Eames SC, Philipson LH, Prince VE. Intraperitoneal injection into adult zebrafish. J Vis Exp. 2010;(42). doi:10.3791/2126.

  45. D’Mello GD, Steckler T. Animal models in cognitive behavioural pharmacology: an overview. Cogn Brain Res. 1996;3:345–52.

    Article  Google Scholar 

  46. Stewart A, Cachat J, Wong K, Gaikwad S, Gilder T, DiLeo J, et al. Homebase behavior of zebrafish in novelty-based paradigms. Behav Processes. 2010;85:198–203. doi:10.1016/j.beproc.2010.07.009.

    Article  PubMed  Google Scholar 

  47. Stewart AM, Gaikwad S, Kyzar E, Kalueff AV. Understanding spatio-temporal strategies of adult zebrafish exploration in the open field test. Brain Res. 2012;1451:44–52. doi:10.1016/j.brainres.2012.02.064.

    Article  CAS  PubMed  Google Scholar 

  48. Cachat J, Stewart A, Utterback E, Hart P, Gaikwad S, Wong K, et al. Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS One. 2011;6(3):e17597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stewart AM, Grieco F, Tegelenbosch RA, Kyzar EJ, Nguyen M, Kaluyeva A, et al. A novel 3D method of locomotor analysis in adult zebrafish: implications for automated detection of CNS drug-evoked phenotypes. J Neurosci Methods. 2015;255:66–74.

    Article  PubMed  Google Scholar 

  50. Anthony EW, Nevins ME. Anxiolytic-like effects of N-methyl-D-aspartate-associated glycine receptor ligands in the rat potentiated startle test. Eur J Pharmacol. 1993;250(2):317–24.

    Article  CAS  PubMed  Google Scholar 

  51. Stewart A, Kadri F, DiLeo J, Min Chung K, Cachat J, Goodspeed J, et al. The developing utility of zebrafish in modeling neurobehavioral disorders. Int J Comp Psychol. 2010;23(1):104–21.

    Google Scholar 

  52. Grillon C, Baas J. A review of the modulation of the startle reflex by affective states and its application in psychiatry. Clin Neurophysiol. 2003;114(9):1557–79.

    Article  PubMed  Google Scholar 

  53. Davis M. Diazepam and flurazepam: effects on conditioned fear as measured with the potentiated startle paradigm. Psychopharmacology (Berl). 1979;62(1):1–7.

    Article  CAS  Google Scholar 

  54. Kimmel CB, Patterson J, Kimmel RO. The development and behavioral characteristics of the startle response in the zebra fish. Dev Psychobiol. 1974;7(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  55. Peskind ER, Potkin SG, Pomara N, Ott BR, Graham SM, Olin JT, et al. Memantine treatment in mild to moderate Alzheimer disease: a 24-week randomized, controlled trial. Am J Geriatr Psychiatry. 2006;14(8):704–15.

    Article  PubMed  Google Scholar 

  56. Takeda A, Loveman E, Clegg A, Kirby J, Picot J, Payne E, Green C. A systematic review of the clinical effectiveness of donepezil, rivastigmine and galantamine on cognition, quality of life and adverse events in Alzheimer’s disease. Int J Geriatr Psychiatry. 2006;21(1):17–28.

    Article  CAS  PubMed  Google Scholar 

  57. Levin ED, Limpuangthip J, Rachakonda T, Peterson M. Timing of nicotine effects on learning in zebrafish. Psychopharmacology (Berl). 2006;184(3–4):547–52. doi:10.1007/s00213-005-0162-9.

    Article  CAS  Google Scholar 

  58. Aldridge JE, Seidler FJ, Slotkin TA. Developmental exposure to chlorpyrifos elicits sex-selective alterations of serotonergic synaptic function in adulthood: critical periods and regional selectivity for effects on the serotonin transporter, receptor subtypes, and cell signaling. Environ Health Perspect. 2004;112(2):148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Icenogle LM, Christopher NC, Blackwelder WP, Caldwell DP, Qiao D, Seidler FJ, et al. Behavioral alterations in adolescent and adult rats caused by a brief subtoxic exposure to chlorpyrifos during neurulation. Neurotoxicol Teratol. 2004;26(1):95–101.

    Article  CAS  PubMed  Google Scholar 

  60. Levin ED, Chrysanthis E, Yacisin K, Linney E. Chlorpyrifos exposure of developing zebrafish: effects on survival and long-term effects on response latency and spatial discrimination. Neurotoxicol Teratol. 2003;25(1):51–7. doi:10.1016/s0892-0362(02)00322-7.

    Article  CAS  PubMed  Google Scholar 

  61. Luca RM, Gerlai R. In search of optimal fear inducing stimuli: differential behavioral responses to computer animated images in zebrafish. Behav Brain Res. 2012;226(1):66–76. doi:10.1016/j.bbr.2011.09.001.

    Article  PubMed  Google Scholar 

  62. Cachat J, Stewart A, Grossman L, Gaikwad S, Kadri F, Chung KM, et al. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc. 2010;5(11):1786–99.

    Article  CAS  PubMed  Google Scholar 

  63. Malykh AG, Sadaie MR. Piracetam and piracetam-like drugs. Drugs. 2010;70(3):287–312.

    Article  CAS  PubMed  Google Scholar 

  64. Salimov R, Salimova N, Shvets L, Shvets N. Effect of chronic piracetam on age-related changes of cross-maze exploration in mice. Pharmacol Biochem Behav. 1995;52(3):637–40.

    Article  CAS  PubMed  Google Scholar 

  65. Waegemans T, Wilsher CR, Danniau A, Ferris SH, Kurz A, Winblad B. Clinical efficacy of piracetam in cognitive impairment: a meta-analysis. Dement Geriatr Cogn Disord. 2002;13(4):217–24.

    Article  CAS  PubMed  Google Scholar 

  66. Al-Imari L, Gerlai R. Sight of conspecifics as reward in associative learning in zebrafish (Danio rerio). Behav Brain Res. 2008;189(1):216–9.

    Article  PubMed  Google Scholar 

  67. Lau B, Bretaud S, Huang Y, Lin E, Guo S. Dissociation of food and opiate preference by a genetic mutation in zebrafish. Genes Brain Behav. 2006;5(7):497–505.

    Article  CAS  PubMed  Google Scholar 

  68. Mathur P, Lau B, Guo S. Conditioned place preference behavior in zebrafish. Nat Protoc. 2011;6(3):338–45.

    Article  CAS  PubMed  Google Scholar 

  69. Williams FE, White D, Messer WSJ. A simple spatial alternation task for assessing memory function in zebrafish. Behav Processes. 2002;58:125–32.

    Article  PubMed  Google Scholar 

  70. Engeszer RE, Ryan MJ, Parichy DM. Learned social preference in zebrafish. Curr Biol. 2004;14(10):881–4.

    Article  CAS  PubMed  Google Scholar 

  71. Saverino C, Gerlai R. The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish. Behav Brain Res. 2008;191(1):77–87.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pather S, Gerlai R. Shuttle box learning in zebrafish (Danio rerio). Behav Brain Res. 2009;196(2):323–7. doi:10.1016/j.bbr.2008.09.013.

    Article  PubMed  Google Scholar 

  73. Arthur D, Levin ED. Spatial and non-spatial visual discrimination learning in zebrafish (Danio rerio). Anim Cogn. 2001;4(2):125–31.

    Article  Google Scholar 

  74. Beninger RJ. The role of dopamine in locomotor activity and learning. Brain Res Rev. 1983;6(2):173–96.

    Article  CAS  Google Scholar 

  75. El-Ghundi M, Fletcher PJ, Drago J, Sibley DR, O’Dowd BF, George SR. Spatial learning deficit in dopamine D 1 receptor knockout mice. Eur J Pharmacol. 1999;383(2):95–106.

    Article  CAS  PubMed  Google Scholar 

  76. El-Ghundi M, O’Dowd BF, George SR. Insights into the role of dopamine receptor systems in learning and memory. Rev Neurosci. 2007;18(1):37–66.

    Article  CAS  PubMed  Google Scholar 

  77. Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5(6):483–94.

    Article  CAS  PubMed  Google Scholar 

  78. Freedman R, Olincy A, Buchanan RW, Harris JG, Gold JM, Johnson L, et al. Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J Psychiatry. 2008;165(8):1040–7.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Potter A, Corwin J, Lang J, Piasecki M, Lenox R, Newhouse PA. Acute effects of the selective cholinergic channel activator (nicotinic agonist) ABT-418 in Alzheimer’s disease. Psychopharmacology (Berl). 1999;142(4):334–42.

    Article  CAS  Google Scholar 

  80. Wilens TE, Verlinden MH, Adler LA, Wozniak PJ, West SA. ABT-089, a neuronal nicotinic receptor partial agonist, for the treatment of attention-deficit/hyperactivity disorder in adults: results of a pilot study. Biol Psychiatry. 2006;59(11):1065–70.

    Article  CAS  PubMed  Google Scholar 

  81. Levin ED, Simon BB. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology (Berl). 1998;138(3–4):217–30.

    Article  CAS  Google Scholar 

  82. Ortega LA, Tracy BA, Gould TJ, Parikh V. Effects of chronic low-and high-dose nicotine on cognitive flexibility in C57BL/6J mice. Behav Brain Res. 2013;238:134–45.

    Article  CAS  PubMed  Google Scholar 

  83. Restle F. Discrimination of cues in mazes: a resolution of the “place-vs.-response” question. Psychol Rev. 1957;64(4):217–28.

    Article  CAS  PubMed  Google Scholar 

  84. Tolman EC. Cognitive maps in rats and men. Psychol Rev. 1948;55(4):189–208.

    Article  CAS  PubMed  Google Scholar 

  85. Gould GG. Modified associative learning T-maze test for zebrafish (Danio rerio) and other small teleost fish. Neuromethods. 2011;51:61–73.

    Article  CAS  Google Scholar 

  86. Darland T, Dowling JE. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci U S A. 2001;98(20):11691–6. doi:10.1073/pnas.191380698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ninkovic J, Folchert A, Makhankov YV, Neuhauss SC, Sillaber I, Straehle U, Bally-Cuif L. Genetic identification of AChE as a positive modulator of addiction to the psychostimulant D-amphetamine in zebrafish. J Neurobiol. 2006;66(5):463–75. doi:10.1002/neu.20231.

    Article  CAS  PubMed  Google Scholar 

  88. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  89. Kalueff AV, Echevarria DJ, Stewart AM. Gaining translational momentum: more zebrafish models for neuroscience research. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;55:1–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Echevarria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Echevarria, D.J., Collier, A.D., Lamb, E.A. (2017). Assessing Cognitive Phenotypes in Zebrafish. In: Kalueff, A. (eds) The rights and wrongs of zebrafish: Behavioral phenotyping of zebrafish. Springer, Cham. https://doi.org/10.1007/978-3-319-33774-6_4

Download citation

Publish with us

Policies and ethics