Skip to main content

Modified Associative Learning T-Maze Test for Zebrafish (Danio rerio) and Other Small Teleost Fish

  • Protocol
  • First Online:
Zebrafish Neurobehavioral Protocols

Part of the book series: Neuromethods ((NM,volume 51))

Abstract

Associative learning is a form of classical (Pavlovian) conditioning in which a neutral stimulus (e.g., the color green) is paired with a stimulus of some significance to an animal (e.g., food), such that for the animal, the color becomes synonymous with food to evoke the same innate, reflexive behavioral responses (e.g., food seeking). This protocol is designed to test the acquisition and extinction of reward-visual stimulus association in zebrafish (Danio rerio) in a T-maze. It is based on the visual discrimination protocol of Colwill et al. (2005), in which colors or patterns are paired with a food reward. The protocol has been modified to include a reward box within the T-maze aquarium so that the influence of drug reinforcement can be studied without the potential confound of reward residues contaminating the testing arena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcaro, A., Huber, R., & Panksepp, J. Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. Brain. Res. Rev. 56, 283–321 (2007).

    Article  PubMed  CAS  Google Scholar 

  2. Pierce, R.C. & Kumaresan, V. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci. Biobehav. Rev. 30, 215–238 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. Schmitz, Y., Benoit-Marand, M., Gonon, F., & Sulzer, D. Presynaptic regulation of dopaminergic neurotransmission. J. Neurochem. 87, 273–289 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. Hall, F.S., Sora, I., Drgonova, J., Li, X.F., Goeb, M., & Uhl, G.R. Molecular mechanisms underlying the rewarding effects of cocaine. Ann. N. Y. Acad. Sci. 1025, 47–56 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. Gonzalez-Burgos, I. & Feria-Velasco, A. Serotonin/dopamine interaction in memory formation in (eds. Di Giovann, G., Di Matteo, V. & Esposito, E.) Progress in Brain Research, Serotonin-Dopamine Interaction: Experimental Evidence and Therapeutic Relevance. 172, 603–623. Elsevier (2008).

    Chapter  Google Scholar 

  6. Nestler, E.J., Gould, E., Manji, H., Buncan, M., Duman, R.S., Greshenfeld, H.K., Hen, R., Koester, S., Lederhendler, I., Meaney, M., Robbins, T., Winsky, L., & Zalcman, S. Preclinical models: status of basic research in depression. Biol. Psychiatry 52, 503–528 (2002).

    Article  PubMed  Google Scholar 

  7. Orsetti, M., Colella, L., Dellarole, A., Canonico, P.L., Ferri, S., & Ghi, P. Effects of chronic administration of olanzapine, amitriptyline, haloperidol or sodium valproate in naive and anhedonic rats. Int. J. Neuropsychopharmacol. 9, 427–436 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. Papp, M., Willner, P., & Muscat, R. An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology 104, 255–259 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. Aldridge, J.E., Levin, E.D., Seidler, F.J., & Slotkin, T.A. Developmental exposure of rats to chlorpyrifos leads to behavioral alterations in adulthood, involving serotonergic mechanisms and resembling animal models of depression. Environ. Health Perspect. 113, 527–531 (2005).

    Article  PubMed  Google Scholar 

  10. Grippo, A.J., Beltz, T.G., Weiss, R.M., & Johnson, A.K. The effects of chronic fluoxetine treatment on chronic mild stress-induced cardiovascular changes and anhedonia. Biol. Psychiatry 59, 309–316 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. Guo, S. Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes Brain Behav. 3, 63–74 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. Lau, B., Bretaud, S., Huang, Y., Lin, E., & Guo, S. Dissociation of food and opiate preference by a genetic mutation in zebrafish. Genes Brain Behav. 5, 497–505 (2005).

    Article  Google Scholar 

  13. Darland, T. & Dowling, J.E. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc. Natl. Acad. Sci. U. S. A. 98, 11691–11696 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. Ninkovic, J. & Bally-Cuif, L. The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods 39, 262–274 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. Guo, S. Using zebrafish to assess the impact of drugs on neural development and function. Expert Opin. Drug Discov. 4, 715–726 (2009).

    Article  PubMed  CAS  Google Scholar 

  16. Salas, C., Broglio, C., Durán, E., Gómez, A., Ocaña, F.M., Jiménez-Moya, F., & Rodríguez, F. Neuropsychology of learning and memory in teleost fish. Zebrafish 3,157–171 (2006).

    Article  PubMed  Google Scholar 

  17. Rink, E. & Wullimann, M.F. Development of the catecholaminergic system in the early zebrafish brain: an immunohistochemical study. Dev. Brain Res. 137, 89–100 (2002).

    Article  CAS  Google Scholar 

  18. Rink, E. & Wullimann, M.F. Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain Res. 1011, 206–220 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. Gould, G.G., Brooks, B.W., & Frazer, A. [3H] citalopram binding to serotonin transporter sites in minnow brains. Basic Clin. Pharmacol. Toxicol. 101, 203–210 (2007).

    Article  PubMed  CAS  Google Scholar 

  20. Colwill, R.M., Raymond, M.P., Ferreira, L., & Escudero, H. Visual discrimination learning in zebrafish (Danio rerio). Behav. Processes 70, 19–31 (2005).

    Article  PubMed  Google Scholar 

  21. Sison, M. & Gerlai, R. Associative learning in zebrafish (Danio rerio) in the plus maze. Behav. Brain Res. 207, 99–104 (2010).

    Article  PubMed  Google Scholar 

  22. Bilotta, J., Risner, M.L., Davis, E.C., & Haggbloom, S.J. Assessing appetitive choice discrimination learning in zebrafish. Zebrafish 2, 259–268 (2005).

    Article  PubMed  Google Scholar 

  23. Sackerman, J., Donegan, J.J., Cunningham, C.S., Nguyen, N.N., Lawless, K., Long, A., Benno, R.H., & Gould, G.G. Zebrafish behavior in novel environments: effects of acute exposure to anxiolytic compounds and choice of Danio rerio line. Int. J. Comp. Psychol. 23, 43–61 (2010).

    PubMed  Google Scholar 

  24. Bencan, Z. & Levin, E.D. The role of alpha7 and alpha4beta2 nicotinic receptors in the nicotine-induced anxiolytic effect in zebrafish. Physiol. Behav. 95, 408–412 (2008).

    Article  PubMed  CAS  Google Scholar 

  25. Krauss, A. & Neumeyer, C. Wavelength dependence of the optomotor response in zebrafish (Danio rerio). Vision Res. 43, 1275–1284 (2003).

    Article  Google Scholar 

  26. Arthur, D. & Levin, E.D. Spatial and non-spatial discrimination learning in zebrafish. Anim. Cogn. 4, 125–131 (2001).

    Article  Google Scholar 

  27. Risner, M.L., Lemerise, E., Vukmanic, E.V., & Moore, A. Behavioral spectral sensitivity of the zebrafish (Danio rerio). Vision Res. 46, 2625–2635 (2006).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gould, G.G. (2011). Modified Associative Learning T-Maze Test for Zebrafish (Danio rerio) and Other Small Teleost Fish. In: Kalueff, A., Cachat, J. (eds) Zebrafish Neurobehavioral Protocols. Neuromethods, vol 51. Humana Press. https://doi.org/10.1007/978-1-60761-953-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-953-6_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-952-9

  • Online ISBN: 978-1-60761-953-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics