Skip to main content
Log in

Nicotine effects on learning in zebrafish: the role of dopaminergic systems

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Nicotine improves cognitive function in a number of animal models including rats, mice, monkeys, and recently, zebrafish. The zebrafish model allows higher throughput and ease in discovering mechanisms of cognitive improvement.

Materials and methods

To further characterize the neural bases of nicotine effects on learning in zebrafish, we determined changes in dopaminergic systems that accompany nicotine-enhanced learning.

Results

Nicotine improved learning and increased brain levels of dihydroxyphenylacetic acid (DOPAC), the primary dopamine metabolite. There was a significant correlation between choice accuracy and DOPAC levels. The nicotinic antagonist mecamylamine blocked the nicotine-induced increase in DOPAC concentrations, in line with our previous finding that mecamylamine reversed nicotine-induced learning improvement.

Conclusions

Dopamine systems are related to learning in zebrafish; nicotine exposure increases both learning rates and DOPAC levels; and nicotinic antagonist administration blocks nicotine-induced rises in DOPAC concentrations. Rapid cognitive assessment of drugs with zebrafish could serve as a useful screening tool for the development of new therapeutics for cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anichtchik OV, Kaslin J, Peitsaro N, Scheinin M, Panula P (2004) Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem 88:443–453

    PubMed  CAS  Google Scholar 

  • Arthur D, Levin ED (2001) Spatial and non-spatial discrimination learning in zebrafish. Anim Cogn 4:125–131

    Article  Google Scholar 

  • Bilotta J, Barnett JA, Hancock L, Saszik S (2004) Ethanol exposure alters zebrafish development: a novel model of fetal alcohol syndrome. Neurotoxicol Teratol 26:737–743

    Article  PubMed  CAS  Google Scholar 

  • Boehmler W, Obrecht-Pflumio S, Canfield V, Thisse C, Thisse B, Levenson R (2004) Evolution and expression of D2 and D3 dopamine receptor genes in zebrafish. Dev Dyn 230:481–493

    Article  PubMed  CAS  Google Scholar 

  • Boehmler W, Carr T, Thisse C, Thisse B, Canfield VA, Levenson R (2007) D4 Dopamine receptor genes of zebrafish and effects of the antipsychotic clozapine on larval swimming behaviour. Genes Brain Behav 6:155–166

    Article  PubMed  CAS  Google Scholar 

  • Bretaud S, Lee S, Guo S (2004) Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol Teratol 26:857–864

    Article  PubMed  CAS  Google Scholar 

  • Buccafusco JJ, Jackson WJ (1991) Beneficial effects of nicotine administered prior to a delayed matching-to-sample task in young and aged monkeys. Neurobiol Aging 12:233–238

    Article  PubMed  CAS  Google Scholar 

  • Carvan MJ 3rd, Loucks E, Weber DN, Williams FE (2004) Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicol Teratol 26:757–768

    Article  PubMed  CAS  Google Scholar 

  • Clarke PB, Schwartz RD, Paul SM, Pert CB, Pert A (1985) Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin. J Neurosci 5:1307–1315

    PubMed  CAS  Google Scholar 

  • Clemente D, Porteros A, Weruaga E, Alonso JR, Arenzana FJ, Aijon J, Arevalo R (2004) Cholinergic elements in the zebrafish central nervous system: histochemical and immunohistochemical analysis. J Comp Neurol 474:75–107

    Article  PubMed  Google Scholar 

  • Dunnett SB, Martel FL (1990) Proactive interference effects on short-term memory in rats: 1. Basic parameters and drug effects. Behav Neurosci 104:655–665

    Article  PubMed  CAS  Google Scholar 

  • Holzschuh J, Ryu S, Aberger F, Driever W (2001) Dopamine transporter expression distinguishes dopaminergic neurons from other catecholaminergic neurons in the developing zebrafish embryo. Mech Dev 101:237–243

    Article  PubMed  CAS  Google Scholar 

  • Kaethner RJ, Stuermer CA (1997) Dynamics of process formation during differentiation of tectal neurons in embryonic zebrafish. J Neurobiol 32:627–639

    Article  PubMed  CAS  Google Scholar 

  • Lam CS, Korzh V, Strahle U (2005) Zebrafish embryos are susceptible to the dopaminergic neurotoxin MPTP. Eur J Neurosci 21:1758–1762

    Article  PubMed  Google Scholar 

  • Levin ED, Chen E (2004) Nicotinic involvement in memory function in zebrafish. Neurotoxicol Teratol 26:731–735

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Rezvani A (2002) Nicotinic treatment for cognitive dysfunction. Current Drug Targets CNS Neurol Disord 1:423–431

    Article  CAS  Google Scholar 

  • Levin ED, Simon BB (1998) Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology 138:217–230

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Crysthansis E, Yacisin K, Linney E (2003) Chlorpyrifos exposure of developing zebrafish: effects on survival and long-term effects on response latency and spatial discrimination. Neurotoxicol Teratol 25:51–57

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Limpuangthip J, Rachakonda T, Peterson M (2006) Timing of nicotine effects on learning in zebrafish. Psychopharmacology 184:547–552

    Article  PubMed  CAS  Google Scholar 

  • Li P, Shah S, Huang L, Carr AL, Gao Y, Thisse C, Thisse B, Li L (2007) Cloning and spatial and temporal expression of the zebrafish dopamine D1 receptor. Dev Dyn 236:1339–1346

    Article  PubMed  CAS  Google Scholar 

  • McKinley ET, Baranowski TC, Blavo DO, Cato C, Doan TN, Rubinstein AL (2005) Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. Brain Res Mol Brain Res 141:128–137

    Article  PubMed  CAS  Google Scholar 

  • Mundy WR, Iwamoto ET (1988) Nicotine impairs acquisition of radial-arm maze performance in rats. Psychopharmacology 94:267–274

    Article  PubMed  CAS  Google Scholar 

  • Newhouse PA, Kelton M (2000) Nicotinic systems in central nervous systems disease: degenerative disorders and beyond. Pharm Acta Helv 74:91–101

    Article  PubMed  CAS  Google Scholar 

  • Newhouse PA, Potter A, Levin ED (1997) Nicotinic system involvement in Alzheimer’s and Parkinson’s diseases: implications for therapeutics. Drugs Aging 11:206–228

    Article  PubMed  CAS  Google Scholar 

  • Phillips AG, Ahn S, Floresco SB (2004) Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task. J Neurosci 24:547–553

    Article  PubMed  CAS  Google Scholar 

  • Reimers MJ, Flockton AR, Tanguay RL (2004) Ethanol- and acetaldehyde-mediated developmental toxicity in zebrafish. Neurotoxicol Teratol 26:769–781

    Article  PubMed  CAS  Google Scholar 

  • Rossetti ZL, Carboni S (2005) Noradrenaline and dopamine elevations in the rat prefrontal cortex in spatial working memory. J Neurosci 25:2322–2329

    Article  PubMed  CAS  Google Scholar 

  • Singer S, Rossi S, Verzosa S, Hashim A, Lonow R, Cooper T, Sershen H, Lajtha A (2004) Nicotine-induced changes in neurotransmitter levels in brain areas associated with cognitive function. Neurochem Res 29:1779–1792

    Article  PubMed  CAS  Google Scholar 

  • Welzl H, Alessandri B, Oettinger R, Bättig K (1988) The effects of long-term nicotine treatment on locomotion, exploration and memory in young and old rats. Psychopharmacology 96:317–323

    Article  PubMed  CAS  Google Scholar 

  • Wullimann MF, Rupp B, Reichert H (1996) Neuroanatomy of the zebrafish brain: a topological atlas. Birkhauser, Basel

    Google Scholar 

  • Zirger JM, Beattie CE, McKay DB, Boyd RT (2003) Cloning and expression of zebrafish neuronal nicotinic acetylcholine receptors. Gene Expr Patterns 3:747–754

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Research support was provided by the Duke University Superfund Basic Research Center (NIH ES010356).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward D. Levin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eddins, D., Petro, A., Williams, P. et al. Nicotine effects on learning in zebrafish: the role of dopaminergic systems. Psychopharmacology 202, 103–109 (2009). https://doi.org/10.1007/s00213-008-1287-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1287-4

Keywords

Navigation