Skip to main content

The History of Somatic Embryogenesis

  • Chapter
  • First Online:
Somatic Embryogenesis: Fundamental Aspects and Applications

Abstract

Somatic embryogenesis is used currently as a powerful tool in biotechnology. It is also used to study the development of the embryo. Somatic embryogenesis is a natural phenomenon that was moved from nature to the laboratory by man. The history of the study of somatic embryogenesis is plenty of discoveries of very different natures: from the role of growth regulators, mainly auxins, to the function of the components of the media of culture. In this chapter, a revision of the major contribution to the advance of knowledge of somatic embryogenesis is made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Brown S, Wetherell DF, Dougall DK (1976) The potassium requirement for growth and embryogenesis in wild carrot suspension cultures. Physiol Plant 37:73–79. doi:10.1111/j.1399-3054.1976.tb01875.x

    Article  CAS  Google Scholar 

  • Carlberg I, Jonsson L, Bergenstråhle A, Soderhall K (1987) Purification of a trypsin inhibitor secreted by embryogenic carrot cells. Plant Physiol 84:197–200. doi:10.1104/pp.84.1.197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L-J, Luthe DS (1987) Analysis of proteins from embryogenic and non-embryogenic rice (Oryza sativa L.) calli. Plant Sci 48:181–188. doi:10.1016/0168-9452(87)90088-4

    Article  CAS  Google Scholar 

  • Choi JH, Liu L-S, Borkird C, Sung ZR (1987) Cloning of genes developmentally regulated during plant embryogenesis. Proc Natl Acad Sci (USA) 84:1906–1910

    Article  CAS  Google Scholar 

  • Choi J, Sung Z (1984) Two-dimensional gel analysis of carrot somatic embryonic proteins. Plant Mol Biol Rep 2:19–25. doi:10.1007/BF02885643

    Article  CAS  Google Scholar 

  • De Vries SC, Booij H, Janssens R et al (1988) Carrot somatic embryogenesis depends on the phytohormone-controlled presence of correctly glycosylated extracellular proteins. Gene Dev 2:462–476. doi:10.1101/gad.2.4.462

    Article  Google Scholar 

  • De-la-Peña C, Nic-Can GI, Galaz-Avalos RM et al (2015) The role of chromatin modications in somatic embryogenesis in plants. Front Plant Sci 6:635. doi:10.3389/fpls.2015.00635

    Article  PubMed  PubMed Central  Google Scholar 

  • Freeland RO (1933) Some morphological and physico-chemical changes accompanying proliferation of Bryophyllum leaves. Am J Bot 20:467–480

    Article  CAS  Google Scholar 

  • Fuentes-Cerda CFJ, Monforte-González M, Méndez-Zeel M et al (2001) Modification of the embryogenic response of Coffea arabica by nitrogen source. Biotechnol Lett 23:1341–1343. doi:10.1023/A:1010545818671

    Article  CAS  Google Scholar 

  • Fujimura T, Komamine A (1979) Involvement, of endogenous auxin in somatic embryogenesis in a carrot cell suspension culture. Z Pflanzenphysiol 95:13–19. doi:10.1016/S0044-328X(79)80023-9

    Article  CAS  Google Scholar 

  • Fujimura T, Komamine A (1982) Molecular aspects of somatic embryogenesis in a synchronous system. In: Fujiwara A (ed) Plant tissue culture 1982. The Japanese association for Plant Tissue Culture, Japan, pp 105–106

    Google Scholar 

  • Fujimura T (2014) Carrot somatic embryogenesis. A dream come true? Plant Biotechnol Rep 8:23–28. doi:10.1007/s11816-013-0295-y

    Article  Google Scholar 

  • Garces H, Sinha N (2009) The ‘mother of thousands’ (Kalanchoë daigremontiana): A plant model for asexual reproduction and CAM studies. Cold Spring Harbor Protocols 2009. doi:10.1101/pdb.emo133

    Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497. doi:10.1038/204497a0

    Article  Google Scholar 

  • Haberlandt G (1902) Kulturversuche mit isolierten pflanzenzellen. Sber Akad Wiss Wein 111:69–92

    Google Scholar 

  • Haccius B, Laksmanan KK (1965) Adventiv-Embryonen aus Nicotiana-kallus, der bei Hohen Lichtintensitäten Kultiviert wurde. Planta 65:102–104. doi:10.1007/BF00385183

    Article  Google Scholar 

  • Halperin W (1964) Morphogenetic studies with partially synchronized cultures of carrot embryos. Science 146:408–409. doi:10.1126/science.146.3642.408

    Article  CAS  PubMed  Google Scholar 

  • Halperin W (1966) Alternative morphogenetic events in cell suspensions. Am J Bot 53:443–453

    Article  Google Scholar 

  • Halperin W (1995) In vitro embryogenesis: some historical issues and unresolved problems. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Netherlands, pp 1–16

    Chapter  Google Scholar 

  • Halperin W, Jensen WA (1967) Ultrastructural changes during growth and embryogenesis in carrot cell cultures. J Ultrastruct Res 18:428–443

    Article  CAS  PubMed  Google Scholar 

  • Halperin W, Wetherell DF (1965) Ammonium requirement for embryogenesis in vitro. Nature 205:519–520. doi:10.1038/205519a0

    Article  Google Scholar 

  • Higashi K, Daita M, Kobayashi T et al (1998) Inhibitory conditioning for carrot somatic embryogenesis in high-cell-density cultures. Plant Cell Rep 18:2–6. doi:10.1007/s002990050522

    Article  CAS  Google Scholar 

  • Howe MD (1931) A morphological study of the leaf notches of Bryophyllum calycinum. Am J Bot 18:387–390. doi:1931_AJB_387_39679

    Google Scholar 

  • Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110. doi:10.1007/s10725-005-3478-x

    Article  CAS  Google Scholar 

  • Johri BM, Bajaj YPS (1962) Behaviour of mature embryo of Dendrophthoe falcata (L.f.) Ettingsh. in vitro. Nature 193:194–195. doi:10.1038/193194a0

    Article  Google Scholar 

  • Kato H, Takeuchi M (1963) Morphogenesis in vitro starting from single cells of carrot root. Plant Cell Physiol 4:243–245

    Google Scholar 

  • Kobayashi T, Higashi K, Kamada H (2000a) lnhibitory effects of p-hydroxybenzyl alcohol on somatic embryogenesis in carrot cell cultures. Plant Biotechnol 17:87–92

    Article  CAS  Google Scholar 

  • Kobayashi T, Higashi K, Kamada H (2001) 4-Hydroxybenzyl alcohol accumulates in suspension-cell cultures and inhibits somatic embryogenesis in carrot. Physiol Plant 112:280–284. doi:10.1034/j.1399-3054.2001.1120217.x

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Higashi K, Saitou T, Kamada H (1999) Physiological properties of inhibitory conditioning factor(s), inhibitory to somatic embryogenesis, in high-density cell cultures of carrot. Plant Sci 144:69–75. doi:10.1016/S0168-9452(99)00062-X

    Article  CAS  Google Scholar 

  • Kobayashi T, Higashi K, Sasaki K et al (2000b) Purification from conditioned medium and chemical identification of a factor that inhibits somatic embryogenesis in carrot. Plant Cell Physiol 41:268–273. doi:10.1093/pcp/41.3.268

    Article  CAS  PubMed  Google Scholar 

  • Konar RN, Nataraja K (1965a) Experimental studies in Ranunculus sceleratus L. Plantlets from freely suspended cells and cell groups. Phytomorphology 15:206–211

    Google Scholar 

  • Konar RN, Nataraja K (1965b) Experimental studies in Ranunculus scleratus L. Development of embyros from the stem epidermis. Phytomorphology 15:132–137

    CAS  Google Scholar 

  • Krikorian AD, Simola LK (1999) Totipotency, somatic embryogenesis, and Harry Waris (1893-1973). Physiol Plant 105:348–355. doi:10.1034/j.1399-3054.1999.105221.x

    Article  CAS  Google Scholar 

  • Levine M (1950) The growth of normal plant tissue in vitro as effected by chemical carcinogens and plant growth substances. L The culture of the carrot tap root meristem. Am J Bot 37:445–458

    Article  CAS  Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127. doi:10.1111/j.1399-3054.1965.tb06874.x

    Article  CAS  Google Scholar 

  • Loyola-Vargas VM (2012) Appendix a: the components of the culture media. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant cell culture protocols, methods in molecular biology, vol 877, Humana Press, Heidelberg, pp 407–418. doi:10.1007/978-1-61779-818-4_30

    Google Scholar 

  • Loyola-Vargas VM, De-la-Peña C, Galaz-Avalos RM, Quiroz-Figueroa FR (2008) Plant tissue culture. An intemporal set of tools. In: Walker JM, Rapley R (eds) Protein and cell biomethods handbook, Humana Press, Totowa, pp 875–904. doi:10.1007/978-1-60327-375-6_50

    Google Scholar 

  • Maheshwari P, Baldev B (1961) Artificial production of buds fom the embryos of Cuscuta reflexa. Nature 191:197–198. doi:10.1038/191197a0

    Article  Google Scholar 

  • Maheshwari P.,Baldev B (1962) In vitro induction of adventive buds from embryos of Cuscuta reflexa Rottb. In: Plant embryology. A symposium, C.S.I.R., New Dehli, pp 129–138

    Google Scholar 

  • Masuda K, Kikuta Y, Okazawa Y (1984) Embryogenesis and ribosomal DNA in carrot cell suspension cultured in vitro. Plant Sci Lett 33:23–29

    Article  CAS  Google Scholar 

  • McVeigh I (1938) Regeneration in Crassula multicava. Am J Bot 25:7–11

    Article  Google Scholar 

  • Miettinen JK, Waris H (1958) A chemical study of the neomorphosis induced by glycine in Oenanthe aqnatica. Physiol Plant 11:193–199. doi:10.1111/j.1399-3054.1958.tb08457.x

    Article  CAS  Google Scholar 

  • Miller CO, Skoog F, Okumura FS et al (1955) Structure and synthesis of kinetin. J Am Chem Soc 77:2262–2263

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Naylor E (1932) The morphology of regeneration in Bryophyllum calycinum. Am J Bot 19:32–40

    Article  Google Scholar 

  • Nic-Can GI, Galaz-Avalos RM, De-la-Peña C, Loyola-Vargas VM (2015) Somatic embryogenesis: Identified factors that lead to embryogenic repression. A case of species of the same genus. PLoS ONE 10:e0126414. doi:10.1371/journal.pone.0126414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norstog K (1961) The growth and differentiation of cultured barley embryos. Am J Bot 48:876–884

    Article  Google Scholar 

  • Quiroz-Figueroa FR, Fuentes-Cerda CFJ, Rojas-Herrera R, Loyola-Vargas VM (2002) Histological studies on the developmental stages and differentiation of two different somatic embryogenesis systems of Coffea arabica. Plant Cell Rep 20:1141–1149. doi:10.1007/s00299-002-0464-x

    Article  CAS  Google Scholar 

  • Radoeva T, Weijers D (2014) A roadmap to embryo identity in plants. Trends Plant Sci 19:709–716. doi:10.1016/j.tplants.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  • Reinert J (1959) Uber die kontrolle der morphogenese und die induktion von adventivembryonen an gewebekulturen aus karotten. Planta 53:318–333. doi:10.1007/BF01881795

    Article  Google Scholar 

  • Reinert J, Backs D (1968) Control of totipotency in plant cells growing in vitro. Nature 220:1340–1341. doi:10.1038/2201340a0

    Article  CAS  PubMed  Google Scholar 

  • Reinert J, Backs D, Krosing M (1966) Faktoren der Embryogenese in Gewebekulturen aus Kulturformen von Umbelliferen. Planta 68:375–378. doi:10.1007/BF00386337

    Article  CAS  PubMed  Google Scholar 

  • Reinert J, Tazawa M, Semenoff S (1967) Nitrogen compounds as factors of the embryogenesis in vitro. Nature 216:1215–1216. doi:10.1038/2161215a0

    Article  CAS  PubMed  Google Scholar 

  • Satoh S, Kamada H, Harada H, Fujii T (1986) Auxin-controlled glycoprotein release into the medium of embryogenic carrot cells. Plant Physiol 81:931–933. doi:10.1104/pp.81.3.931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta C, Raghavan V (1980a) Somatic embryogenesis in carrot cell suspension I. Pattern of protein and nucleic acid synthesis. J Exp Bot 31:247–258. doi:10.1093/jxb/31.1.247

    Article  CAS  Google Scholar 

  • Sengupta C, Raghavan V (1980b) Somatic embryogenesis in carrot cell suspension: II. Synthesis of ribosomal RNA and poly(A)+ RNA. J Exp Bot 31:259–268. doi:10.1093/jxb/31.1.259

    Article  CAS  Google Scholar 

  • Skoog F (1947) Growth substances in higher plants. Annu Rev Biochem 16:529–564

    Article  CAS  PubMed  Google Scholar 

  • Smith DL, Krikorian AD (1990) Somatic embryogenesis of carrot in hormone-free medium: external pH control over morphogenesis. Am J Bot 77:1634–1647

    Article  CAS  PubMed  Google Scholar 

  • Steward FC, Mapes MO, Kent AE, Holsten RD (1964) Growth and development of cultured plant cells. Science 143:20–27. doi:10.1126/science.143.3601.20

    Article  CAS  PubMed  Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958a) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708

    Article  Google Scholar 

  • Steward FC, Mapes MO, Smith J (1958b) Growth and organized development of cultured cells. I. Growth and division of freely suspended cells. Am J Bot 45:693–703

    Article  Google Scholar 

  • Stirn S, Jacobsen H-J (1987) Marker proteins for embryogenic differentiation patterns in pea callus. Plant Cell Rep 6:50–54. doi:10.1007/BF00269738

    Article  CAS  PubMed  Google Scholar 

  • Sung ZR (1983) Applications of two-dimensional gel electrophoresis in studies of gene expression during early plant development. In: Celis JE, Bravo R (eds) Two-dimensional gel electrophoresis of proteins. Academic Press, Orlando, FL, pp 397–413

    Google Scholar 

  • Sung ZR, Okimoto R (1981) Embryonic proteins in somatic embryos of carrot. Proc Natl Acad Sci (USA) 78:3683–3687

    Article  CAS  Google Scholar 

  • Tazawa M, Reinert J (1969) Extracellular and intracellular chemical environments in relation to embryogenesis in vitro. Protoplasma 68:157–173. doi:10.1007/BF01247902

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Ogita S, Sasamoto H, Kamada H (2004) Inhibitory factor(s) of somatic embryogenesis regulated suspensor differentiation in suspension culture of Japanese larch (Larix leptolepis GORDON). Plant Biotechnol 21:87–94. doi:10.5511/plantbiotechnology.21.87

    Article  CAS  Google Scholar 

  • Umehara M, Ogita S, Sasamoto H et al (2005) Identification of a novel factor, vanillyl benzyl ether, which inhibits somatic embryogenesis of Japanese larch (Larix leptolepis Gordon). Plant Cell Physiol 46:445–453. doi:10.1093/pcp/pci041

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Ogita S, Sasamoto H et al (2007) Identification of a factor that complementarily inhibits somatic embryogenesis with vanillyl benzyl ether. In Vitro Cell Dev-Pl 43:203–208. doi:10.1007/s11627-006-9016-3

    Article  CAS  Google Scholar 

  • Vasil IK, Hildebrandt AC (1966a) Variations of morphogenetic behavior in plant tissue cultures I. Cichorium endivia. Am J Bot 53:860–869

    Article  Google Scholar 

  • Vasil IK, Hildebrandt AC (1966b) Variations of morphogenetic behavior in plant tissue cultures. II. Petroselinum hortense. Am J Bot 53:869–874

    Article  Google Scholar 

  • Waris H (1957) A striking morphogenetic effect of amino acid in seed plant. Suom Kemistil 30B:121

    Google Scholar 

  • Waris H (1959) Neomorphosis in seed plants induced by amino acids I: Oenanthe aquatica. Physiol Plant 12:753–766. doi:10.1111/j.1399-3054.1959.tb08910.x

    Article  Google Scholar 

  • Wetherell DF, Dougall DK (1976) Sources of nitrogen supporting growth and embryogenesis in cultured wild carrot tissue. Physiol Plant 37:97–103. doi:10.1111/j.1399-3054.1976.tb03939.x

    Article  CAS  Google Scholar 

  • Wetherell DF, Halperin W (1963) Embryos derived from callus tissue cultures of the wild carrot. Nature 200:1336–1337. doi:10.1038/2001336a0

    Article  Google Scholar 

  • Wiggans SC (1954) Growth and organ formation in callus tissues derived from Daucus carota. Am J Bot 41:321–326

    Article  CAS  Google Scholar 

  • Yamada R, Nakagawa H, Sinot Y (1967) Studies on the differentiation in cultured cells. I. Embryogenesis in three strains of Solanum callus. Bot. Mag. Tokyo 80:68–74

    Article  Google Scholar 

  • Yarbrough JA (1932) Anatomical and developmental studies of the foliar embryos of Bryophyllum calycinum. Am J Bot 19:443–453

    Article  Google Scholar 

  • Yarbrough JA (1936) The foliar embryos of Tolmiea menziesii. Am J Bot 23:16–20

    Article  Google Scholar 

  • Yarbrough JA (1934) History of leaf development in Bryophyllum calycinum. Am J Bot 21:467–484

    Article  Google Scholar 

  • Yeung EC, Meinke DW (1993) Embryogenesis in angiosperms: development of the suspensor. Plant Cell 5:1371–1381. doi:10.1105/tpc.5.10.1371

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work from VMLV laboratory was supported by a grant received from the National Council for Science and Technology (CONACyT, 157014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor M. Loyola-Vargas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Loyola-Vargas, V.M. (2016). The History of Somatic Embryogenesis. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Somatic Embryogenesis: Fundamental Aspects and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-33705-0_2

Download citation

Publish with us

Policies and ethics