Skip to main content

Introduction

  • Chapter
  • First Online:
Contact Force Models for Multibody Dynamics

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 226))

Abstract

This chapter presents some key aspects related to the modeling and simulation of contact problems in multibody mechanical systems. First, the fundamental aspects of the classical problem of contact mechanics are briefly visited. Next, the main methodologies commonly utilized to model and simulate contact-impact problems in multibody systems are presented, namely, those based on the penalty approach and the ones based on non-smooth formulation. In the sequel of this process, the pros and cons of each method are discussed. As application, particular emphasis is given to the description of the biomechanical contact problems for modeling and simulating human articulations such as the knee joint, and the description of foot-ground interaction during human gait. The generality of the contact force models in multibody dynamics are then summarized in terms of simplicity and efficiency of numerical computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abouhossein A, Weisse B, Ferguson SJ (2011) A multibody modelling approach to determine load sharing between passive elements of the lumbar spine. Comput Meth Biomech Biomed Eng 14(6):527–537

    Article  Google Scholar 

  • Acary V, Brogliato B (2008) Numerical methods for nonsmooth dynamical systems: applications in mechanics and electronics. Lecture notes in applied and computational mechanics, vol 35. Springer, Berlin

    Google Scholar 

  • Almeida J, Fraga F, Silva M, Silva-Carvalho L (2009) Feedback control of the head-neck complex for nonimpact scenarios using multibody dynamics. Multibody Sys Dyn 21:395–416

    Article  MATH  Google Scholar 

  • Alves J, Peixinho N, Silva MT, Flores P, Lankarani HM (2015) A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids. Mech Mach Theory 85:172–188

    Article  Google Scholar 

  • Ambrósio J, Veríssimo P (2009) Improved bushing models for general multibody systems and vehicle dynamics. Multibody Sys Dyn 22:341–365

    Article  MATH  Google Scholar 

  • Anitescu M, Potra FA (1997) Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn 14(3):231–247

    Article  MathSciNet  MATH  Google Scholar 

  • Anitescu M, Potra FA, Stewart DE (1999) Time-stepping for three-dimensional rigid body dynamics. Comput Methods Appl Mech Eng 177(3):183–197

    Article  MathSciNet  MATH  Google Scholar 

  • Askari E, Flores P, Dabirrahmani D, Appleyard R (2014) Nonlinear vibration and dynamics of ceramic on ceramic artificial hip joints: a spatial multibody modelling. Nonlinear Dyn 76(2):1365–1377

    Article  MathSciNet  Google Scholar 

  • Askari E, Flores P, Dabirrahmani D, Appleyard R (2015) A computational analysis of squeaking hip prostheses. J Comput Nonlinear Dyn 10(2):024502

    Article  Google Scholar 

  • Bei Y, Fregly BJ (2004) Multibody dynamic simulation of knee contact mechanics. Med Eng Phys 26:777–789

    Article  Google Scholar 

  • Blankevoort L, Kuiper JH, Huiskes R, Grootenboer HJ (1991) Articular contact in a three-dimensional model of the knee. J Biomech 24(11):1019–1031

    Article  Google Scholar 

  • Boos M, McPhee J (2010) Volumetric contact models and experimental validation. In: Proceedings of the 1st joint international conference on multibody dynamics, Lappeenranta, Finland, 25–27 May 2010, 10 p

    Google Scholar 

  • Brogliato B (2003) Some perspectives on the analysis and control of complementarity systems. IEEE Trans Autom Control 48(6):918–935

    Article  MathSciNet  Google Scholar 

  • Brogliato B, Ten Dam AA, Paoli L, Genot F, Abadie M (2002) Numerical simulations of finite dimensional multibody nonsmooth mechanical systems. Appl Mech 55:107–150

    Article  Google Scholar 

  • Castro APG, Completo A, Simões JA, Flores P (2015) Biomechanical behaviour of cancellous bone on patellofemoral arthroplasty with journey prosthesis: a finite element study. Comput Meth Biomech Biomed Eng 18(10):1090–1098

    Article  Google Scholar 

  • Choi J, Ryu HS, Kim CW, Choi JH (2010) An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometry. Multibody Sys Dyn 23:99–120

    Article  MATH  Google Scholar 

  • Dias JMP, Pereira MS (1995) Dynamics of flexible mechanical systems with contact-impact and plastic deformations. Nonlinear Dyn 8:491–512

    Google Scholar 

  • Dopico D, Luaces A, Gonzalez M, Cuadrado J (2009) Dealing with multiple contacts in a human-in-the-loop application. In: Arczewski K, FrÄ…czek J, Wojtyra M (eds) Proceedings of multibody dynamics 2009, ECCOMAS thematic conference, Warsaw, Poland, 29 June–2 July 2009, 17 p

    Google Scholar 

  • Ebrahimi S, Eberhard P (2006) A linear complementarity formulation on position level for frictionless impact of planar deformable bodies. ZAMM Z Angew Math Mech 86(10):807–817

    Article  MathSciNet  MATH  Google Scholar 

  • Ebrahimi S, Kövecses J (2010) Unit homogenization for estimation of inertial parameters of multibody mechanical systems. Mech Mach Theory 45(3):438–453

    Article  MATH  Google Scholar 

  • Feeny B, Guran A, Hinrichs N, Popp K (1998) A historical review on dry friction and stick-slip phenomena. Appl Mech Rev 51:321–341

    Article  Google Scholar 

  • Ferreira A (2008) Multibody model of the cervical spine and head for the simulation of traumatic and degenerative disorders. MSc thesis, Technical University of Lisbon, Lisbon, Portugal

    Google Scholar 

  • Flickinger DM, Bowling A (2010) Simultaneous oblique impacts and contacts in multibody systems with friction. Multibody Sys Dyn 23:249–261

    Article  MathSciNet  MATH  Google Scholar 

  • Flores P (2009) Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech Mach Theory 44(6):1211–1222

    Article  MathSciNet  MATH  Google Scholar 

  • Flores P (2015) Concepts and formulations for spatial multibody dynamics. Springer, Berlin

    Google Scholar 

  • Flores P, Ambrósio J (2010) On the contact detection for contact-impact analysis in multibody systems. Multibody Sys Dyn 24(1):103–122

    Article  MathSciNet  MATH  Google Scholar 

  • Flores P, Lankarani HM (2012) Dynamic response of multibody systems with multiple clearance joints. J Comput Nonlinear Dyn 7(3):031003

    Article  Google Scholar 

  • Flores P, Lankarani HM (2014) An overview of several formulations for dry and lubricated revolute joint clearances in planar rigid-multi-body mechanical systems. In: Proceedings of IDETC/CIE 2014 ASME 2014 international design engineering technical conferences and computers and information in engineering conference, 17–20 Aug 2014, Buffalo, New York, USA, 14 p

    Google Scholar 

  • Flores P, Ambrósio J, Claro JP (2004) Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Sys Dyn 12(1):47–74

    Article  MATH  Google Scholar 

  • Flores P, Ambrósio J, Claro JCP, Lankarani HM (2006) Spatial revolute joints with clearances for dynamic analysis of multi-body systems. In: Proceedings of the Institution of Mechanical Engineers, Part K. J Multi-body Dyn 220(4):257–271

    Google Scholar 

  • Flores P, Ambrósio J, Claro JCP, Lankarani HM (2007) Dynamic behaviour of planar rigid multi-body systems including revolute joints with clearance. In: Proceedings of the Institution of Mechanical Engineers, Part K. J Multi-body Dyn 221(2):161–174

    Google Scholar 

  • Flores P, Ambrósio J, Claro JCP, Lankarani HM (2008) Translational joints with clearance in rigid multibody systems. J Comput Nonlinear Dyn 3(1):0110071-10

    Article  Google Scholar 

  • Flores P, Leine R, Glocker C (2010) Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Sys Dyn 23:165–190

    Article  MathSciNet  MATH  Google Scholar 

  • Flores P, Koshy CS, Lankarani HM, Ambrósio J, Claro JCP (2011) Numerical and experimental investigation on multibody systems with revolute clearance joints. Nonlinear Dyn 65(4):383–398

    Article  MATH  Google Scholar 

  • Flores P, Leine R, Glocker C (2012) Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systems. Nonlinear Dyn 69(4):2117–2133

    Article  MathSciNet  Google Scholar 

  • Förg M, Pfeiffer F, Ulbrich H (2005) Simulation of unilateral constrained systems with many bodies. Multibody Sys Dyn 14(2):137–154

    Article  MathSciNet  MATH  Google Scholar 

  • Gilardi G, Sharf I (2002) Literature survey of contact dynamics modeling. Mech Mach Theory 37:1213–1239

    Article  MathSciNet  MATH  Google Scholar 

  • Glocker C, Pfeiffer F (1993) Complementarity problems in multibody systems with planar friction. Arch Appl Mech 63(7):452–463

    MATH  Google Scholar 

  • Glocker C, Studer C (2005) Formulation and preparation for numerical evaluation of linear complementary systems in dynamics. Multibody Sys Dyn 13:447–463

    Article  MathSciNet  MATH  Google Scholar 

  • Goldsmith W (1960) Impact—The theory and physical behaviour of colliding solids. Edward Arnold Ltd, London

    MATH  Google Scholar 

  • Gonthier Y, McPhee J, Lange C, Piedboeuf J-C (2004) A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Sys Dyn 11:209–233

    Article  MATH  Google Scholar 

  • Guess TM, Thiagarajan G, Kia M, Mishra M (2010) A subject specific multibody model of the knee with menisci. Med Eng Phys 32(5):505–515

    Article  Google Scholar 

  • Güler HC, Berme N, Simon RS (1998) A viscoelastic sphere model for the representation of plantar soft tissue during simulations. J Biomech 31(9):847–853

    Article  Google Scholar 

  • Han I, Gilmore BJ (1993) Multi body impact motion with friction analysis, simulation, and validation. J Mech Des 115:412–422

    Article  Google Scholar 

  • Haug EJ, Wu SC, Yang SM (1986) Dynamics of mechanical systems with coulomb friction, stiction, impact and constraint addition deletion—I theory. Mech Mach Theory 21:401–406

    Article  Google Scholar 

  • Hertz H (1881) Ãœber die Berührung fester elastischer Körper. Journal reine und angewandte Mathematik 92:156–171

    MathSciNet  Google Scholar 

  • Hippmann G (2004) An algorithm for compliant contact between complexly shaped bodies. Multibody Sys Dyn 12:345–362

    Article  MathSciNet  MATH  Google Scholar 

  • Hirokawa S (1991) Three-dimensional mathematical model analysis of the patellofemoral joint. J Biomech 24(8):659–671

    Article  Google Scholar 

  • Hirschkorn M, McPhee J, Birkett S (2006) Dynamic modeling and experimental testing of a piano action mechanism. J Comput Nonlinear Dyn 1(1):47–55

    Article  Google Scholar 

  • Hunt KH, Crossley FRE (1975) Coefficient of restitution interpreted as damping in vibroimpact. J Appl Mech 7:440–445

    Article  Google Scholar 

  • Khulief YA (2013) Modeling of impact in multibody systems: an overview. J Comput Nonlinear Dyn 8:0210121

    Google Scholar 

  • Khulief YA, Shabana AA (1987) A continuous force model for the impact analysis of flexible multibody systems. Mech Mach Theory 22:213–224

    Article  Google Scholar 

  • Khulief YA, Haug EJ, Shabana AA (1983) Dynamic analysis of large scale mechanical systems with intermittent motion. Technical Report No. CCAD-83-10, University of Iowa, USA

    Google Scholar 

  • Koo S, Andriacchi TP (2007) A comparison of the influence of global functional loads vs. local contact anatomy on articular cartilage thickness at the knee. J Biomech 40(13):2961–2966

    Article  Google Scholar 

  • Koshy CS, Flores P, Lankarani HM (2013) Study of the effect of contact force model on the dynamic response of mechanical systems with dry clearance joints: computational and experimental approaches. Nonlinear Dyn 73(1–2):325–338

    Article  Google Scholar 

  • Kwak BM (1991) Complementarity problem formulation of three-dimensional frictional contact. J Appl Mech 58:134–140

    Article  MATH  Google Scholar 

  • Lankarani HM (2000) A poisson-based formulation for frictional impact analysis of multibody mechanical systems with open or closed kinematic chains. J Mech Des 122(4):489–497

    Article  Google Scholar 

  • Lankarani HM, Nikravesh PE (1988) Application of the canonical equations of motion in problems of constrained multibody systems with intermittent motion. In: ASME advances in design automation, DE-vol 14, pp 414–423

    Google Scholar 

  • Lankarani HM, Nikravesh PE (1990) A contact force model with hysteresis damping for impact analysis of multibody systems. J Mech Des 112:369–376

    Article  Google Scholar 

  • Lankarani HM, Nikravesh PE (1992) Canonical impulse-momentum equations for impact analysis of multibody systems. J Mech Des 114(1):180–186

    Article  Google Scholar 

  • Lankarani HM, Nikravesh PE (1994) Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn 5:193–207

    Google Scholar 

  • Leal A, Pereira R, Pereira R, Flores P, Silva FS, Espregueira-Mendes, J (2015) Design of a new medical device for aiding clinical diagnosis of patellofemoral disorders. New Trends Mech Mach Sci 633–641

    Google Scholar 

  • Lee TW, Wang AC (1983) On the dynamics of intermittent-motion mechanisms. Part 1—Dynamic model and response. J Mech Transm Autom Des 105:534–540

    Article  Google Scholar 

  • Lee J, Flashner H, McNitt-Gray JL (2011) Estimation of multibody kinematics using position measurements. J Comput Nonlinear Dyn 6(3):031001

    Article  Google Scholar 

  • Lin YC, Haftka RT, Queipo NV, Fregly BJ (2010) Surrogate articular contact models for computationally efficient multibody dynamic simulations. Med Eng Phys 32(6):584–594

    Article  Google Scholar 

  • Liu C-S, Zhang K, Yang R (2007) The FEM analysis and approximate model for cylindrical joints with clearances. Mech Mach Theory 42:183–197

    Article  MATH  Google Scholar 

  • Lopes DS, Silva MT, Ambrósio JA, Flores P (2010) A mathematical framework for rigid contact detection between quadric and superquadric surfaces. Multibody Sys Dyn 24(3):255–280

    Article  MathSciNet  MATH  Google Scholar 

  • Machado M, Flores F, Claro JCP, Ambrósio J, Silva M, Completo A, Lankarani HM (2010) Development of a planar multibody model of the human knee joint. Nonlinear Dyn 60(3):459–478

    Article  MATH  Google Scholar 

  • Machado M, Flores P, Ambrósio J, Completo A (2011) Influence of the contact model on the dynamic response of the human knee joint. In: Proceedings of the IMechE, Part K. J Multi-body Dyn 225(4):344–358

    Google Scholar 

  • Machado M, Moreira P, Flores P, Lankarani HM (2012) Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory. Mech Mach Theory 53:99–121

    Article  Google Scholar 

  • Machado M, Flores P, Ambrósio J (2014) A lookup-table-based approach for spatial analysis of contact problems. J Comput Nonlinear Dyn 9(4):041010

    Article  Google Scholar 

  • Marques F, Flores P, Lankarani HM (2015) On the frictional contacts in multibody system dynamics. In: Proceedings of the ECCOMAS thematic conference on multibody dynamics 2015, Barcelona, Spain, 29 June–2 July 2015, 12 p

    Google Scholar 

  • Meireles S, Completo A, Simões JA, Flores P (2010) Strain shielding in distal femur after patellofemoral arthroplasty under different activity conditions. J Biomech 43(3):477–484

    Article  Google Scholar 

  • Millard M, McPhee J, Kubica E (2008) Multi-step forward dynamic gait simulation. In: Botasso CL (ed) Multibody dynamics—Computational methods in applied sciences, vol 12. Springer, Dordrecht, pp 25–43

    Google Scholar 

  • Monteiro N, Silva M, Folgado J, Melancia J (2011) Structural analysis of the intervertebral discs adjacent to an interbody fusion using multibody dynamics and finite element cosimulation. Multibody Sys Dyn 25(2):245–270

    Article  Google Scholar 

  • Moreau JJ (1979) Application of convex analysis to some problems of dry friction. In: Zorski H (ed) Trends in applications of pure mathematics to mechanics, vol 2. Pitman, London, pp 263–280

    Google Scholar 

  • Moreau JJ (1999) Numerical aspects of the sweeping process. Comput Meth Appl Mech Eng 177:329–349

    Article  MathSciNet  MATH  Google Scholar 

  • Moreira P (2009) Development of a three-dimensional contact model for the foot-ground interaction in gait simulations. MSc thesis, University of Minho, Guimarães, Portugal

    Google Scholar 

  • Moreira P, Silva M, Flores P (2010) A biomechanical multibody foot model for forward dynamic analysis. In: Proceedings of the 1st joint international conference on multibody dynamics, Lappeenranta, Finland, 25–27 May 2010, 10 p

    Google Scholar 

  • Muvengei O, Kihiu J, Ikua B (2012) Dynamic analysis of planar multi-body systems with LuGre friction at differently located revolute clearance joints. Multibody Sys Dyn 28(4):369–393

    Article  MathSciNet  Google Scholar 

  • Najafabadi SAM, Kövecses J, Angeles J (2008) Impacts in multibody systems: modeling and experiments. Multibody Sys Dyn 20:163–176

    Article  MathSciNet  MATH  Google Scholar 

  • Nikravesh PE (1988) Computer-aided analysis of mechanical systems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Nikravesh PE (2008) Planar multibody dynamics: formulation, programming and applications. C&C Press

    Google Scholar 

  • Oden JT, Martins JAC (1985) Models and computational methods for dynamic friction phenomena. Comput Methods Appl Mech Eng 52:527–634

    Article  MathSciNet  MATH  Google Scholar 

  • Panagiotopoulos PD (1985) Inequality problems in mechanics and applications. In: Convex and nonconvex energy functionals. Birkhäuser-Verlag, Basel, Boston, Stuttgart

    Google Scholar 

  • Pang J, Trinkle JC (1996) Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with Coulomb friction. Math Program 73(2):199–226

    Article  MathSciNet  MATH  Google Scholar 

  • Pang J-S, Stewart DE (2008) Differential variational inequalities. Math Program 113:345–424

    Article  MathSciNet  MATH  Google Scholar 

  • Peixoto J, Moura B, Moreira P, Souto AP, Flores P (2015) Development and early results of a new concept of an orthopedic footwear stirrup. In: New trends in mechanism and machine science, pp 699–707

    Google Scholar 

  • Pérez-González A, Fenollosa-Esteve C, Sancho-Bru JL, Sánchez-Marín FT, Vergara M, Rodríguez-Cervantes PJ (2008) A modified elastic foundation contact model for application in 3D models of the prosthetic knee. Med Eng Phys 30(3):387–398

    Article  Google Scholar 

  • Pfeiffer F (2003) The idea of complementarity in multibody dynamics. Arch Appl Mech 72(11–12):807–816

    MATH  Google Scholar 

  • Pfeiffer F, Glocker C (1996) Multibody dynamics with unilateral constraints. Wiley, New York

    Book  MATH  Google Scholar 

  • Rodriguez A, Bowling A (2012) Solution to indeterminate multipoint impact with frictional contact using constraints. Multibody Sys Dyn 28(4):313–330

    Article  MathSciNet  Google Scholar 

  • Sharf I, Zhang Y (2006) A contact force solution for non-colliding contact dynamics simulation. Multibody Sys Dyn 16:263–290

    Article  MathSciNet  MATH  Google Scholar 

  • Signorini A (1933) Sopra alcune questioni di elastostatica. Atti della Societa Italian per il Progresso della Scienza

    Google Scholar 

  • Silva P, Silva MT, Martins JM (2010) Evaluation of the contact forces developed in the lower limb/orthosis interface for comfort design. Multibody Sys Dyn 24(3):367–388

    Article  MATH  Google Scholar 

  • Studer C, Leine RI, Glocker C (2008) Step size adjustment and extrapolation for time-stepping schemes in non-smooth dynamics. Int J Numer Meth Eng 76(11):1747–1781

    Article  MathSciNet  MATH  Google Scholar 

  • Tasora A, Negrut D, Anitescu A (2008) Large-scale parallel multi-body dynamics with frictional contact on the graphical processing unit. In: Proceedings of the Institution of Mechanical Engineers, Part-K. J Multi-body Dyn 222:315–326

    Google Scholar 

  • Tian Q, Sun Y, Liu C, Hu H, Flores P (2013) Elastohydrodynamic lubricated cylindrical joints for rigid-flexible multibody dynamics. Comput Struct 114:106–120

    Article  Google Scholar 

  • Tian Q, Xiao Q, Sun Y, Hu H, Liu H, Flores P (2015) Coupling dynamics of a geared multibody system supported by ElastoHydroDynamic lubricated cylindrical joints. Multibody Sys Dyn 33(3):259–284

    Article  MathSciNet  Google Scholar 

  • Trinkle JC, Tzitzouris JA, Pang JS (2001) Dynamic multi-rigid-body systems with concurrent distributed contacts. Philos Trans Math Phys Eng Sci 359(1789):2575–2593

    Article  MathSciNet  MATH  Google Scholar 

  • Wismans J, Veldpaus F, Janssen JA (1980) A three-dimensional mathematical model of the knee joint. J Biomech 13(8):677–685

    Article  Google Scholar 

  • Wojtyra M (2009) Joint reactions in rigid body mechanisms with dependent constraints. Mech Mach Theory 44(12):2265–2278

    Article  MATH  Google Scholar 

  • Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Wu S-H, Tsai S-J (2009) Contact stress analysis of skew conical involute gear drives in approximate line contact. Mech Mach Theory 44(9):1658–1676

    Article  MATH  Google Scholar 

  • Zhang Y, Sharf I (2009) Validation of nonlinear viscoelastic contact force models for low speed impact. J Appl Mech 76(5):051002

    Article  Google Scholar 

  • Zhang Z, Xu L, Flores P, Lankarani HM (2014) A Kriging Model for dynamics of mechanical systems with revolute joint clearances. J Comput Nonlinear Dyn 9(3):031013

    Google Scholar 

  • Zhu Y, Chen JX, Xiao S, MacMahon E (1999) 3D Knee modeling and biomechanical simulation. Comput Sci Eng 1(4):82–87

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Flores .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Flores, P., Lankarani, H.M. (2016). Introduction. In: Contact Force Models for Multibody Dynamics. Solid Mechanics and Its Applications, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-30897-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30897-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30896-8

  • Online ISBN: 978-3-319-30897-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics