Skip to main content

Structured Models and Their Use in Modeling Anticancer Therapies

  • Chapter
  • First Online:
System Engineering Approach to Planning Anticancer Therapies

Abstract

Tumorigenesis is a very complex pathological process, evolving through different parallel pathways. The list of hallmark capabilities which cancer has to acquire was presented in two famous review papers by Hanahan and Weinberg (Cell 100:57–70, 2000; Cell 144:646–674, 2011). Following recent biological discoveries, especially those in molecular biology, mathematicians try to create models adequate to knowledge in the biomedical field, oriented on specific aspects of tumor development. They apply various modeling techniques in order to perform this task. Among these techniques one can distinguish models based on partial differential equations, single-cell-based models, cellular automata, and others. This chapter is devoted to models with structure. Structure may have different meanings, it may refer to the space where cells develop, cellular level of differentiation, or some other physiological feature of the cell, it may also refer to mutual relations among the elements forming the whole system, as it is in agent-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.L. Abkowitz, S.N. Catlin, P. Guttorp, Evidence that hematopoiesis may be a stochastic process in vivo. Nat. Med. 2(2), 190–197 (1996)

    Article  Google Scholar 

  2. T. Alarcon, H.M. Byrne, P.K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225(2), 257–274 (2003)

    Article  MathSciNet  Google Scholar 

  3. D. Ambrosi, L. Preziosi, On the closure of mass balance models for tumor growth. Math. Models Methods Appl. Sci. 12, 737–754 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. A.R. Anderson, M.J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–899 (1998)

    Article  MATH  Google Scholar 

  5. R.P. Araujo, D.L.S. McElwain, A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol. 66, 1039–1091 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. R.P. Araujo, D.L.S. McElwain, A mixture theory for the genesis of residual stresses in growing tissues i: a general formulation. SIAM J. Appl. Math. 65, 1261–1284 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. R.P. Araujo, D.L.S. McElwain, A mixture theory for the genesis of residual stresses in growing tissues ii: solutions to the biphasic equations for a multicell spheroid. SIAM J. Appl. Math. 66, 447–467 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. O. Arino, M. Kimmel, Stability analysis of models of cell production systems. Math. Model. 7(9–12), 1269–1300 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. O. Arino, M. Kimmel, Asymptotic analysis of a cell cycle model based on unequal division. SIAM J. Appl. Math. 47(1), 128–145 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. O. Arino, M. Kimmel, Comparison of approaches to modeling of cell population dynamics. SIAM J. Appl. Math. 53(5), 1480–1504 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. N. Awaya, H. Uchida, Y. Miyakawa, K. Kinjo, H. Matsushita, H. Nakajima, Y. Ikeda, M. Kizaki, Novel variant isoform of G-CSF receptor involved in induction of proliferation of FDCP-2 cells: relevance to the pathogenesis of myelodysplastic syndrome. J. Cell. Physiol. 191(3), 327–335 (2002)

    Article  Google Scholar 

  12. A. Barranco-Mendoza, C. Clem, A. Gupta, P. Fizzano, M. Guillaud, Predicting the development of pre-invasive lesions from biopsies. Arch. Control Sci. 9, 25–40 (1999)

    MathSciNet  MATH  Google Scholar 

  13. V. Becker, M. Schilling, J. Bachmann, U. Baumann, A. Raue, T. Maiwald, J. Timmer, U. Klingmuller, Covering a broad dynamic range: information processing at the erythropoietin receptor. Sci. Signal. 328(5984), 1404–1408 (2010)

    Google Scholar 

  14. R. Beekman, I.P. Touw, G-CSF and its receptor in myeloid malignancy. Blood 115(25), 5131–5136 (2010)

    Article  Google Scholar 

  15. R. Beekman, M.G. Valkhof, M.A. Sanders, P.M. van Strien, J.R. Haanstra, L. Broeders, W.M. Geertsma-Kleinekoort, A.J. Veerman, P.J. Valk, R.G. Verhaak, B. Lowenberg, I.P. Touw, Sequential gain of mutations in severe congenital neutropenia progressing to acute myeloid leukemia. Blood 119(22), 5071–5077 (2012)

    Article  Google Scholar 

  16. N. Bellomo, M. Delitala, From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells. Phys. Life Rev. 5, 183–206 (2008)

    Article  Google Scholar 

  17. S. Bernard, J. Belair, M.C. Mackey, Oscillations in cyclical neutropenia: new evidence based on mathematical modeling. J. Theor. Biol. 223(3), 283–298 (2003)

    Article  MathSciNet  Google Scholar 

  18. R. Bertolusso, M. Kimmel, Modeling spatial effects in early carcinogenesis: stochastic versus deterministic reaction-diffusion systems. Math. Model. Nat. Phenom. 7(01), 245–260 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Bertuzzi, A. Gandolfi, Recent views on the cell cycle structure. Bull. Math. Biol. 45, 605–616 (1983)

    Article  MATH  Google Scholar 

  20. A. Bertuzzi, A. Fasano, A. Gandolfi, D. Marangi, Cell kinetics in tumour cords studied by a model with variable cell cycle length. Math. Biosci. 177/178, 103–125 (2002)

    Google Scholar 

  21. A. Bertuzzi, A. Fasano, A. Gandolfi, A mathematical model for tumor cords incorporating the flow of interstitial fluid. Math. Models Methods Appl. Sci. 15, 1735–1777 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli, Cell resensitization after delivery of a cycle-specific anticancer drug and effect of dose splitting: learning from tumour cords. J. Theor. Biol. 244, 388–399 (2007)

    Article  MathSciNet  Google Scholar 

  23. F. Billy, J. Clairambault, Designing proliferating cell population models with functional targets for control by anti-cancer drugs. Discret. Cont. Dyn. Syst. 18(4), 865–889 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Billy, J. Clairambault, O. Fercoq, S. Gaubertt, T. Lepoutre, T. Ouillon, S. Saito, Synchronisation and control of proliferation in cycling cell population models with age structure. Math. Comput. Simul. 96, 66–94 (2014)

    Article  MathSciNet  Google Scholar 

  25. I. Bozic, T. Antal, H. Ohtsuki, H. Carter, D. Kim, S. Chen, R. Karchin, K.W. Kinzler, B. Vogelstein, M.A. Nowak, Accumulation of driver and passenger mutations during tumor progression. Proc. Natl. Acad. Sci. 107(43), 18545–18550 (2010)

    Article  Google Scholar 

  26. R. Bravo, D.A. Axelrod, A calibrated agent-based computer model of stochastic cell dynamics in normal human colon crypts useful for in silico experiments. Theor. Biol. Med. Model. 10(1), 66 (2013)

    Google Scholar 

  27. D.J. Brenner, The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin. Radiat. Oncol. 18(4), 234–239 (2008)

    Article  Google Scholar 

  28. D. Bresch, T. Colin, E. Grenier, B. Ribba, O. Saut, Computational modeling of solid tumor growth: the avascular stage. SIAM J. Sci. Comput. 32, 2321–2344 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Brock, H. Chang, S. Huang, Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nat. Rev. Genet. 10(5), 336–342 (2009)

    Article  Google Scholar 

  30. H. Byrne, L. Preziosi, Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20, 341–366 (2003)

    Article  MATH  Google Scholar 

  31. H.M. Byrne, J.R. King, D.L.S. McElwain, L. Preziosi, A two-phase model of solid tumour growth. Appl. Math. Lett. 16, 567–573 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. H.C. Chang, M. Hemberg, M. Barahona, D.E. Ingber, S. Huang, Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453(7194), 544–547 (2008)

    Article  Google Scholar 

  33. M.A. Chaplain, Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development. Math. Comput. Model. 23, 47–87 (1996)

    Article  MATH  Google Scholar 

  34. M.A. Chaplain, A.R. Anderson, Mathematical modelling, simulation and prediction of tumour-induced angiogenesis. Invasion Metastasis 16, 222–234 (1996)

    Google Scholar 

  35. M.A.J. Chaplain, L. Graziano, L. Preziosi, Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development. Math. Med. Biol. 23, 197–229 (2006)

    Article  MATH  Google Scholar 

  36. A.A. Cohen, N. Geva-Zatorsky, E. Eden, M. Frenkel-Morgenstern, I. Issaeva, A. Sigal, R. Milo, C. Cohen-Saidon, Y. Liron, Z. Kam, L. Cohen, T. Danon, N. Perzov, U. Alon, Dynamic proteomics of individual cancer cells in response to a drug. Science 322(5907), 1511–1516 (2008)

    Article  Google Scholar 

  37. A. Dawson, T. Hillen, Derivation of the tumour control probability (TCP) from a cell cycle model. Comput. Math. Methods Med. 7(2–3), 121–141 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. O. Diekmann, Modeling and analysing physiologically structured populations, in Mathematics Inspired by Biology. Lecture Notes in Mathematics, vol. 1714 (Springer, New York, 1999), pp. 1–37

    Google Scholar 

  39. F. Dong, M. van Paassen, C. van Buitenen, L.H. Hoefsloot, B. Lowenberg, I.P. Touw, A point mutation in the granulocyte colony-stimulating factor receptor (G-CSF-R) gene in a case of acute myeloid leukemia results in the overexpression of a novel G-CSF-R isoform. Blood 85(4), 902–911 (1995)

    Google Scholar 

  40. S. Dormann, A. Deutsch, Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. In Silico Biol. 2, 393–406 (2002)

    Google Scholar 

  41. M. Doumic, A. Marciniak-Czochra, B. Perthame, J.P. Zubelli, A structured population model of cell differentiation. SIAM J. Appl. Math. 71(6), 1918–1940 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. D. Drasdo, S. Hohme, A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Phys. Biol. 2, 133–147 (2005)

    Article  Google Scholar 

  43. J. Dyson, R. Villella-Bressan, G.F. Webb, A maturity structured model of a population of proliferating and quiescent cells. Arch. Control Sci. 9, 201–225 (1999)

    MathSciNet  MATH  Google Scholar 

  44. J. Dyson, R. Villella-Bressan, G.F. Webb, A nonlinear age and maturity structured model of population dynamics: I. Basic theory. J. Math. Anal. Appl. 242(1), 93–104 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Dyson, R. Villella-Bressan, G.F. Webb, Asynchronous exponential growth in an age structured population of proliferating and quiescent cells. Math. Biosci. 177–178, 73–83 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. M.B. Elowitz, A.J. Levine, E.D. Siggia, P.S. Swain, Stochastic gene expression in a single cell. Sci. Signal. 297(5584), 1183–1186 (2002)

    Google Scholar 

  47. H. Enderling, M.A. Chaplain, A.R.A. Anderson, J.S. Vaidya, A mathematical model of breast cancer development, local treatment and recurrence. J. Theor. Biol. 246(2), 245–259 (2007)

    Article  MathSciNet  Google Scholar 

  48. G.B. Ermentrout, L. Edelstein-Keshet, Cellular automata approaches to biological modeling. J. Theor. Biol. 160(1), 97–133 (1993)

    Article  Google Scholar 

  49. C. Foley, M.C. Mackey, Dynamic hematological disease: a review. J. Math. Biol. 58(1–2), 285–322 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. S.J. Franks, H.M. Byrne, J.R. King, J.C.E. Underwood, C.E. Lewis, Modelling the early growth of ductal carcinoma in situ of the breast. J. Math. Biol. 47, 424–452 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. T.S. Gardner, C.R. Cantor, J.J. Collins, Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767), 339–342 (2000)

    Google Scholar 

  52. R.A. Gatenby, E.T. Gawlinski, A.F. Gmitro, B. Kaylor, R.J. Gillies, Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res. 66, 5216–5223 (2006)

    Article  Google Scholar 

  53. M. Germeshausen, J. Skokowa, M. Ballmaier, C. Zeidler, K. Welte, G-CSF receptor mutations in patients with congenital neutropenia. Curr. Opin. Hematol. 15(4), 332–337 (2008)

    Article  Google Scholar 

  54. P. Getto, A. Marciniak-Czochra, Y. Nakata, Global dynamics of two-compartment models for cell production systems with regulatory mechanisms. Math. Biosci. 245(2), 258–268 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. T. Glaubach, S.J. Corey, From famine to feast: sending out the clones. Blood 119(22), 5063–5064 (2012)

    Article  Google Scholar 

  56. H.P. Greenspan, Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. 4, 317–340 (1972)

    Article  MATH  Google Scholar 

  57. P.B. Gupta, C.M. Fillmore, G. Jiang, S.D. Shapira, K. Tao, C. Kuperwasser, E.S. Lander, Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146(4), 633–644 (2011)

    Article  Google Scholar 

  58. P. Gwiazda, G. Jamroz, A. Marciniak-Czochra, Models of discrete and continuous cell differentiation in the framework of transport equation. SIAM J. Math. Anal. 44(2), 1103–1133 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  59. P. Haccou, P. Jagers, V.A. Vatutin, Branching Processes: Variation, Growth, and Extinction of Populations, vol. 5 (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  60. D. Hanahan, R.A. Weinberg, The hallmarks of cancer. Cell 100, 57–70 (2000)

    Article  Google Scholar 

  61. D. Hanahan, R.A. Weinberg, The hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    Article  Google Scholar 

  62. L.E. Harnevo, Z. Agur, Drug resistance as a dynamic process in a model for multistep gene amplification under various levels of selection stringency. Cancer Chemother. Pharmacol. 30(6), 469–476 (1992)

    Article  Google Scholar 

  63. H. Hatzikirou, A. Deutsch, Cellular automata as microscopic models of cell migration in heterogeneous environments. Curr. Top. Dev. Biol. 81, 401–434 (2008)

    Article  Google Scholar 

  64. D.J. Hicklin, L.M. Ellis, Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23(5), 1011–1027 (2005)

    Article  Google Scholar 

  65. T. Hillen, K.J. Painter, A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  66. P. Hinow, P. Gerlee, L.J. McCawley, V. Quaranta, M. Ciobanu, S. Wang, J.M. Graham, B.P. Ayati, J. Claridge, K.R. Swanson, M. Loveless, A.R.A. Anderson, A spatial model of tumor-host interaction: application of chemotherapy. Math. Biosci. Eng. 6(3), 521–546 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  67. S. Huang, Systems biology of stem cells: three useful perspectives to help overcome the paradigm of linear pathways. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 366(1575), 2247–2259 (2011)

    Article  Google Scholar 

  68. J. Jaruszewicz, P.J. Zuk, T. Lipniacki, Type of noise defines global attractors in bistable molecular regulatory systems. J. Theor. Biol. 317, 150–151 (2013)

    Article  MathSciNet  Google Scholar 

  69. Y. Kam, K.A. Rejniak, A.R. Anderson, Cellular modeling of cancer invasion: integration of in silico and in vitro approaches. J. Cell. Physiol. 227, 431–438 (2012)

    Article  Google Scholar 

  70. A.R. Kansal, S. Torquato, G.R. Harsh IV, E.A. Chiocca, T.S. Deisboeck, Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J. Theor. Biol. 203(4), 367–382 (2000)

    Article  Google Scholar 

  71. P.S. Kim, P.P. Lee, D. Levy, A PDE model for imatinib-treated chronic myelogenous leukemia. Bull. Math. Biol. 70(7), 1994–2016 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  72. M. Kim, R.J. Gillies, K.A. Rejniak, Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues. Front. Oncol. 3, 278 (2013)

    Google Scholar 

  73. M. Kimmel, D.E. Axelrod, Mathematical models of gene amplification with applications to cellular drug resistance and tumorigenicity. Genetics 125(3), 633–644 (1990)

    Google Scholar 

  74. M. Kimmel, D.E. Axelrod, Branching Processes in Biology, extended, 2nd edn. (Springer, New York, 2015)

    MATH  Google Scholar 

  75. M. Kimmel, S. Corey, Stochastic hypothesis of transition from inborn neutropenia to AML: interactions of cell population dynamics and population genetics. Front. Oncol. 3, 89 (2013)

    Article  Google Scholar 

  76. M. Kimmel, Z. Darzynkiewicz, O. Arino, F. Traganos, Analysis of a cell cycle model based on unequal division of metabolic constituents to daughter cells during cytokinesis. J. Theor. Biol. 110(4), 637–664 (1984)

    Article  Google Scholar 

  77. N. Kronik, Y. Kogan, M. Elishmereni, K. Halevi-Tobias, S. Vuk-Pavlovic, Z. Agur, Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models. PLoS ONE 5(12), e15482 (2010)

    Google Scholar 

  78. A.D. Lander, K.K. Gokoffski, F.Y.M. Wan, Q. Nie, A.L. Calof, Cell lineages and the logic of proliferative control. PLoS Biol. 7(1), e1000015 (2009)

    Google Scholar 

  79. P. Laslo, C.J. Spooner, A. Warmflash, D.W. Lancki, H.J. Lee, R. Sciammas, B.N. Gantner, A.R. Dinner, H. Singh, Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126(4), 755–766 (2006)

    Article  Google Scholar 

  80. P. Laslo, J.M.R. Pongubala, D.W. Lancki, H. Singh, Gene regulatory networks directing myeloid and lymphoid cell fates within the immune system, in Seminars in Immunology, vol. 20, no. 4 (Academic, London, 2008), pp. 228–235

    Google Scholar 

  81. M. Laurent, J. Deschatrette, C.M. Wolfrom, Unmasking chaotic attributes in time series of living cell populations. PLoS ONE 5(2), e9346 (2010)

    Google Scholar 

  82. H.A. Levine, B.P. Sleeman, N. Nilsen-Hamilton, A mathematical modeling for the roles of pericytes and macrophages in the initiation of angiogenesis I. The role of protease inhibitors in preventing angiogenesis. Math. Biosci. 168, 75–115 (2000)

    MathSciNet  MATH  Google Scholar 

  83. T. Ley et al., The cancer genome atlas research network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368(22), 2059–2074 (2013)

    Google Scholar 

  84. T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A.R. Brasier, M. Kimmel, Transcriptional stochasticity in gene expression. J. Theor. Biol. 238(2), 348–367 (2006)

    Article  MathSciNet  Google Scholar 

  85. W.C. Lo, C.S. Chou, K.K. Gokoffski, F.Y.M. Wan, A.D. Lander, A.L. Calof, Q. Nie, Feedback regulation in multistage cell lineages. Math. Biosci. Eng. 6(1), 59–82 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  86. A. Loinger, A. Lipshtat, N.Q. Balaban, O. Biham, Stochastic simulations of genetic switch systems. Phys. Rev. E 75(2), 021904 (2009)

    Google Scholar 

  87. M. Loose, G. Swiers, R. Patient, Transcriptional networks regulating hematopoietic cell fate decisions. Curr. Opin. Hematol. 14(4), 307–314 (2007)

    Article  Google Scholar 

  88. J.C. Lopez Alfonso, N. Jagiella, L. Nunez, M.A. Herrero, D. Drasdo, Estimating dose painting effects in radiotherapy: a mathematical model. PLoS ONE 9(2), e89380 (2014)

    Google Scholar 

  89. A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil, B. Perthame, Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors. Bull. Math. Biol. 77, 1–22 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  90. J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23, R1–R9 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  91. P. Macklin, J. Lowengrub, Nonlinear simulation of the effect of microenvironment on tumor growth. J. Theor. Biol. 245, 677–704 (2007)

    Article  MathSciNet  Google Scholar 

  92. P. Macklin, S. McDougall, A.R. Anderson, M.A. Chaplain, V. Cristini, J. Lowengrub, Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. 58, 765–798 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  93. E. Mamontov, A. Koptioug, K. Psiuk-Maksymowicz, The minimal, phase-transition model for the cell-number maintenance by the hyperplasia-extended homeorhesis. Acta Biotheor. 54, 61–101 (2006)

    Article  MATH  Google Scholar 

  94. A. Marciniak-Czochra, M. Kimmel, Reaction-diffusion model of early carcinogenesis: the effects of influx of mutated cells. Math. Model. Nat. Phenom. 3(7), 90–114 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  95. A. Marciniak-Czochra, T. Stiehl, W. Wagner, Modeling of replicative senescence in hematopoietic development. Aging (Albany NY) 1(8), 723–732 (2009)

    Google Scholar 

  96. A. Marciniak-Czochra, T. Stiehl, A.D. Ho, W. Jager, W. Wagner, Modeling of asymmetric cell division in hematopoietic stem cells-regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev. 18(3), 377–386 (2009)

    Article  Google Scholar 

  97. A. McKendrick, Applications of mathematics to medical problems. Proc. Edinb. Math. Soc. 44, 98–130 (1926)

    Article  Google Scholar 

  98. R.M.H. Merks, E.D. Perryn, A. Shirinifard, J.A. Glazier, Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol. 4(9), e1000163 (2008)

    Google Scholar 

  99. J.L. Michaels, V. Naudot, L.S. Liebovitch, Dynamic stabilization in the PU1-GATA1 circuit using a model with time-dependent kinetic change. Bull. Math. Biol. 73(9), 2132–2151 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  100. F. Milde, M. Bergdorf, P. Koumoutsakos, A hybrid model for three-dimensional simulations of Sprouting Angiogenesis. Biophys. J. 95(7), 3146–3160 (2008)

    Article  Google Scholar 

  101. S.H. Moolgavkar, A.G. Knudson, Mutation and cancer: a model for human carcinogenesis. J. Nat. Cancer Inst. 66(6), 1037–1052 (1981)

    Google Scholar 

  102. K.A. Moore, I.R. Lemischka, Stem cells and their niches. Science 311(5769), 1880–1885 (2006)

    Article  Google Scholar 

  103. S.J. Morrison, J. Kimble, Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441(7097), 1068–1074 (2006)

    Article  Google Scholar 

  104. D. Muzzey, A. van Oudenaarden, When it comes to decisions, myeloid progenitors crave positive feedback. Cell 126(4), 650–652 (2006)

    Article  Google Scholar 

  105. Y. Nakata, P. Getto, A. Marciniak-Czochra, T. Alarcon, Stability analysis of multi-compartment models for cell production systems. J. Biol. Dyn. 6(Suppl. 1), 2–18 (2012)

    Article  MathSciNet  Google Scholar 

  106. P. Nurse, P. Thuriaux, Controls over the timing of DNA replication during the cell cycle of fission yeast. Exp. Cell Res. 107, 365–375 (1977)

    Article  Google Scholar 

  107. M. Ogawa, Stochastic model revisited. Int. J. Hematol. 69(1), 2–5 (1999)

    Google Scholar 

  108. M.R. Owen, T. Alarcon, P.K. Maini, H.M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol. 58, 689–721 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  109. K.J. Painter, T. Hillen, Mathematical modelling of glioma growth: the use of diffusion tensor imaging (DTI) data to predict the anisotropic pathways of cancer invasion. J. Theor. Biol. 323, 25–39 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  110. B. Parkin, P. Ouillette, Y. Li, J. Keller, C. Lam, D. Roulston, C. Li, K. Shedden, S.N. Malek, Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia. Blood 121(2), 369–377 (2013)

    Article  Google Scholar 

  111. A.A. Patel, E.T. Gawlinski, S.K. Lemieux, R.A. Gatenby, A cellular automaton model of early tumor growth and invasion: the effects of native tissue vascularity and increased anaerobic tumor metabolism. J. Theor. Biol. 213(3), 315–331 (2001)

    Article  MathSciNet  Google Scholar 

  112. D. Peixoto, D. Dingli, J.M. Pacheco, Modelling hematopoiesis in health and disease. Math. Comput. Model. 53(7), 1546–1557 (2011)

    Article  Google Scholar 

  113. L. Pelkmans, Using cell-to-cell variability—a new era in molecular biology. Science 336(6080), 425–426 (2012)

    Article  Google Scholar 

  114. C.P. Please, G.J. Pettet, D.L.S. McElwain, A new approach to modelling the formation of necrotic regions in tumours. Appl. Math. Lett. 11, 89–94 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  115. G.G. Powathil, D.J. Adamson, M.A. Chaplain, Towards predicting the response of a solid tumour to chemotherapy and radiotherapy treatments: clinical insights from a computational model. PLOS Comput. Biol. 9(7), e1003120 (2013)

    Google Scholar 

  116. L. Preziosi, A. Tosin, Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications. J. Math. Biol. 58, 625–656 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  117. K. Psiuk-Maksymowicz, Multiphase modelling of desmoplastic tumour growth. J. Theor. Biol. 329, 52–63 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  118. K. Psiuk-Maksymowicz, E. Mamontov, Homeorhesis-based modelling and fast numerical analysis for oncogenic hyperplasia under radiotherapy. Math. Comput. Model. 47, 580–596 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  119. T. Radivoyevitch, L. Hlatky, J. Landaw, R.K. Sachs, Quantitative modeling of chronic myeloid leukemia: insights from radiobiology. Blood 119(19), 4363–4371 (2012)

    Article  Google Scholar 

  120. J.M. Raser, E.K. OŚhea, Noise in gene expression: origins, consequences, and control. Science 309(5743), 2010–2013 (2005)

    Article  Google Scholar 

  121. K.A. Rejniak, An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. J. Theor. Biol. 247(1), 186–204 (2007)

    Article  MathSciNet  Google Scholar 

  122. A. Raue, V. Becker, U. Klingmuller, J. Timmer, Identifiability and observability analysis for experimental design in nonlinear dynamical models. Chaos: Interdiscip. J. Nonlinear Sci. 20(4), 045105–045105 (2010)

    Article  MATH  Google Scholar 

  123. B. Ribba, T. Alarcon, K. Marron, P.K. Maini, Z. Agur, The use of hybrid cellular automaton models for improving cancer therapy, in ACRI 2004, ed. by P.M.A. Sloot, B. Chopard, A.G. Hoekstra. Lecture Notes in Computer Science, vol. 3305 (Springer, Berlin/Heidelberg, 2004), pp. 444–453

    Google Scholar 

  124. B. Ribba, T. Colin, S. Schnell, A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies. Theor. Biol. Med. Model. 3, 7 (2006)

    Article  Google Scholar 

  125. B. Ribba, O. Saut, T. Colin, D. Bresch, E. Grenier, J.P. Boissel, A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. J. Theor. Biol. 243, 532–541 (2006)

    Article  MathSciNet  Google Scholar 

  126. R. Rockne, E.C. Alvord Jr, J.K. Rockhill, K.R. Swanson, A mathematical model for brain tumor response to radiation therapy. J. Math. Biol. 58(4–5), 561–578 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  127. R. Rockne, J.K. Rockhill, M. Mrugala, A.M. Spence, I. Kalet, K. Hendrickson, A. Lai, T. Cloughesy, E.C. Alvord Jr, K.R. Swanson, Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys. Med. Biol. 55(12), 3271–3285 (2010)

    Article  Google Scholar 

  128. I. Roeder, M. Horn, I. Glauche, A. Hochhaus, M.C. Mueller, M. Loeffler, Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat. Med. 12(10), 1181–1184 (2006)

    Article  Google Scholar 

  129. T. Roose, S.J. Chapman, P.K. Maini, Mathematical models of avascular tumor growth. SIAM Rev. 49, 179–208 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  130. P.S. Rosenberg, B.P. Alter, A.A. Bolyard, M.A. Bonilla, L.A. Boxer, B. Cham, C. Fier, M. Freedman, G. Kannourakis, S. Kinsey, B. Schwinzer, C. Zeidler, K. Welte, D.C. Dale, Severe chronic neutropenia international Registry. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 107(12), 4628–4635 (2006)

    Google Scholar 

  131. P.S. Rosenberg, C. Zeidler, A.A. Bolyard, B.P. Alter, M.A. Bonilla, L.A. Boxer, Y. Dror, S. Kinsey, D.C. Link, P.E. Newburger, A. Shimamura, K. Welte, D.C. Dale, Stable long-term risk of leukaemia in patients with severe congenital neutropenia maintained on G-CSF therapy. Br. J. Haematol. 150(2), 196–199 (2010)

    Google Scholar 

  132. M.S. Samoilov, G. Price, A.P. Arkin, From fluctuations to phenotypes: the physiology of noise. Sci. Signal. 366, re17 (2006)

    Google Scholar 

  133. T. Schroeder, Asymmetric cell division in normal and malignant hematopoietic precursor cells. Cell Stem Cell 1(5), 479–481 (2007)

    Article  MathSciNet  Google Scholar 

  134. T. Schroeder, Long-term single-cell imaging of mammalian stem cells. Nat. Methods 8(4s), S30–S35 (2011)

    Article  MathSciNet  Google Scholar 

  135. M. Sehl, H. Zhou, J.S. Sinsheimer, K.L. Lange, Extinction models for cancer stem cell therapy. Math. Biosci. 234(2), 132–146 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  136. J.A. Sethian, A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93(4), 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  137. J.A. Sherratt, Traveling wave solutions of a mathematical model for tumor encapsulation. SIAM J. Appl. Math. 60, 392–407 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  138. J.A. Sherratt, Predictive mathematical modeling in metastasis. Methods Mol. Med. 57, 309–315 (2001)

    Google Scholar 

  139. A. Sigal, R. Milo, A. Cohen, N. Geva-Zatorsky, Y. Klein, Y. Liron, N. Rosenfeld, T. Danon, N. Perzov, U. Alon, Variability and memory of protein levels in human cells. Nature 444(7119), 643–646 (2006)

    Article  Google Scholar 

  140. W.K. Sinclair, The shape of radiation survival curves of mammalian cells cultured in vitro, in Biophysical Aspects of Radiation Quality. Technical Reports Series, vol. 58 (International Atomic Energy Agency, Vienna, 1966), pp. 21–43

    Google Scholar 

  141. B. Snijder, L. Pelkmans, Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell Biol. 12(2), 119–125 (2011)

    Article  Google Scholar 

  142. T. Stiehl, A. Marciniak-Czochra, Characterization of stem cells using mathematical models of multistage cell lineages. Math. Comput. Model. 53(7), 1505–1517 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  143. T. Stiehl, A. Marciniak-Czochra, Mathematical modeling of leukemogenesis and cancer stem cell dynamics. Math. Model. Nat. Phenom. 7(1), 166–202 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  144. T. Stiehl, N. Baran, A.D. Ho, A. Marciniak-Czochra, Clonal selection and therapy resistance in acute leukaemias: mathematical modelling explains different proliferation patterns at diagnosis and relapse. J. R. Soc. Interface 11(94), 20140079 (2014)

    Google Scholar 

  145. T. Stiehl, A.D. Ho, A. Marciniak-Czochra, The impact of CD34+ cell dose on engraftment after SCTs: personalized estimates based on mathematical modeling. Bone Marrow Transplant. 49(1), 30–37 (2014)

    Article  Google Scholar 

  146. T. Stiehl, N. Baran, A.D. Ho, A. Marciniak-Czochra, Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: a model to predict patient survival. Cancer Res. 75(6), 940–949 (2015)

    Article  Google Scholar 

  147. K.R. Swanson, C. Bridge, J.D. Murray, E.C. Alvord Jr., Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci. 216, 1–10 (2003)

    Article  Google Scholar 

  148. H. Takizawa, S. Boettcher, M.G. Manz, Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 119(13), 2991–3002 (2012)

    Article  Google Scholar 

  149. K.S. Tieu, R.S. Tieu, J.A. Martinez-Agosto, M.E. Sehl, Stem cell niche dynamics: from homeostasis to carcinogenesis. Stem Cells Int. 2012, 367567 (2012)

    Article  Google Scholar 

  150. C. Tomasetti, B. Vogelstein, G. Parmigiani, Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc. Natl. Acad. Sci. 110(6), 1999–2004 (2013)

    Article  Google Scholar 

  151. A. Traulsen, J.M. Pacheco, L. Luzzatto, D. Dingli, Somatic mutations and the hierarchy of hematopoiesis. Bioessays 32(11), 1003–1008 (2010)

    Article  Google Scholar 

  152. J.J. Tyson, K.B. Hannsgen, Cell growth and division: a deterministic/probabilistic model of the cell cycle. J. Math. Biol. 23(2), 231–246 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  153. J.J. Tyson, B. Novak, Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 210, 249–263 (2001)

    Article  Google Scholar 

  154. J.M. Vose, J.O. Armitage, Clinical applications of hematopoietic growth factors. J. Clin. Oncol. 13(4), 1023–1035 (1995)

    Google Scholar 

  155. T. Walenda, T. Stiehl, H. Braun, J. Frobel, A.D. Ho, T. Schroeder, T.W. Goecke, B. Rath, U. Germing, A. Marciniak-Czochra, W. Wagner, Feedback signals in myelodysplastic syndromes: increased self-renewal of the malignant clone suppresses normal hematopoiesis. PLoS Comput. Biol. 10(4), e1003599 (2014)

    Google Scholar 

  156. J.P. Ward, J.R. King, Mathematical modelling of avascular tumour growth. IMA J. Math. Appl. Med. Biol. 14, 36–69 (1997)

    Article  MATH  Google Scholar 

  157. M. Wazewska-Czyzewska, A. Lasota. Mathematical models of the red cell system. Matematyta Stosowana 6, 25–40 (1976)

    MathSciNet  Google Scholar 

  158. G.F. Webb, Random transitions, size control, and inheritance in cell population dynamics. Math. Biosci. 85(1), 71–91 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  159. M. Welter, K. Bartha, H. Rieger, Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth. J. Theor. Biol. 259, 405–422 (2009)

    Article  MathSciNet  Google Scholar 

  160. Z.L. Whichard, C.A. Sarkar, M. Kimmel, S.J. Corey, Hematopoiesis and its disorders: a systems biology approach. Blood 115(12), 2339–2347 (2010)

    Article  Google Scholar 

  161. A. Wilson, E. Laurenti, G. Oser, R.C. van der Wath, W. Blanco-Bose, M. Jaworski, S. Offner, C.F. Dunant, L. Eshkind, E. Bockamp, P. Lio, H.R. Macdonald, A. Trumpp, Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6), 1118–1129 (2008)

    Article  Google Scholar 

  162. S. Wise, J. Kim, J.S. Lowengrub, Solving the regularized, strongly anisotropic Chan-Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226, 414–446 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  163. S.M. Wise, J.S. Lowengrub, H.B. Frieboes, V. Cristini, Three-dimensional multispecies nonlinear tumor growth–I Model and numerical method. J. Theor. Biol. 253, 524–543 (2008)

    Article  MathSciNet  Google Scholar 

  164. M. Wu, H.Y. Kwon, F. Rattis, J. Blum, C. Zhao, R. Ashkenazi, T.L. Jackson, N. Gaiano, T. Oliver, T. Reya, Imaging hematopoietic precursor division in real time. Cell Stem Cell 1(5), 541–554 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Świerniak, A., Kimmel, M., Smieja, J., Puszynski, K., Psiuk-Maksymowicz, K. (2016). Structured Models and Their Use in Modeling Anticancer Therapies. In: System Engineering Approach to Planning Anticancer Therapies. Springer, Cham. https://doi.org/10.1007/978-3-319-28095-0_4

Download citation

Publish with us

Policies and ethics