Skip to main content
Log in

Cell growth and division: a deterministic/probabilistic model of the cell cycle

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A model of the cell cycle, incorporating a deterministic cell-size monitor and a probabilistic component, is investigated. Steady-state distributions for cell size and generation time are calculated and shown to be globally asymptotically stable. These distributions are used to calculate various statistical quantities, which are then compared to known experimental data. Finally, the results are compared to distributions calculated from a Monte-Carlo simulation of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Diekmann, O., Heijmans, H. J. A. M., Thieme, H. R.: On the stability of the cell size distribution. J. Math. Biol. 19, 227–248 (1984)

    Google Scholar 

  • Fantes, P. A.: Control of cell size and cycle time in Schizosaccharomyces pombe. J. Cell Sci. 24, 51–67 (1977)

    Google Scholar 

  • Green, P. J.: A ‘random transition’ in the cell cycle? Nature 285, 116 (1980)

    Google Scholar 

  • Hannsgen, K. B., Tyson, J. J.: Stability of the steady-state size distribution in a model of cell growth and division. J. Math. Biol. 22, 293–301 (1985)

    Google Scholar 

  • Heijmans, H. J. A. M.: On the stable size distribution of populations reproducing by fission into two unequal parts. Math. Biosci. 72, 19–50 (1984)

    Google Scholar 

  • John, P. C. L.: The cell cycle. London: Cambridge University Press 1981

    Google Scholar 

  • Koch, A. L.: Does the variability of the cell cycle result from one or many chance events? Nature 286, 80–82 (1980)

    Google Scholar 

  • Koch, A. L., Schaechter, M.: A model for statistics of the cell division process. J. Gen. Microbiol. 29, 435–454 (1962)

    Google Scholar 

  • Kubitschek, H. E.: Normal distribution of cell generation rate. Exp. Cell Res. 26, 439–450 (1962)

    Google Scholar 

  • Lasota, A., Yorke, J. A.: Exact dynamical systems and the Frobenius-Perron operator. Trans. Am. Math. Soc. 273, 375–384 (1982)

    Google Scholar 

  • Lasota, A., Mackey, M. C.: Globally asymptotic properties of proliferating cell populations. J. Math. Biol. 19, 43–62 (1984)

    Google Scholar 

  • Lord, P. G., Wheals, A. E.: Variability in individual cell cycles of Saccharomyces cerevisiae. J. Cell Sci. 50, 361–376 (1981)

    Google Scholar 

  • Minor, P. D., Smith, J. A.: Explanation of degree of correlation of sibling generation times in animal cells. Nature 248, 241–243 (1974)

    Google Scholar 

  • Mitchison, J. M.: The timing of cell cycle events. In: Little, M., Paweletz, N., Petzelt, C., Ponstingl, H., Schroeter, D., Zimmerman, H.-P. (eds.) Mitosis: Facts and questions, pp. 1–13. Berlin Heidelberg New York: Springer 1977

    Google Scholar 

  • Nurse, P.: Cell cycle control—both deterministic and probabilistic? Nature 286, 9–10 (1980)

    Google Scholar 

  • Nurse, P., Streiblova, E.: The microbial cell cycle. Boca Raton, Florida: CRC Press 1984

    Google Scholar 

  • Painter, P., Marr, A. G.: Inequality of mean interdivision time and doubling time. J. Gen. Microbiol. 48, 155–159 (1967)

    Google Scholar 

  • Painter, P. R., Marr, A. G.: Mathematics of microbial populations. Ann. Rev. Microbiol. 22, 519–548 (1968)

    Google Scholar 

  • Powell, E. O.: Growth rate and generation time of bacteria, with special reference to continuous culture. J. Gen. Microbiol. 15, 492–511 (1956)

    Google Scholar 

  • Powell, E. O.: A note on Koch and Schaechter's hypothesis about growth and fission of bacteria. J. Gen. Microbiol. 37, 231–249 (1964)

    Google Scholar 

  • Schaechter, M., Williamson, J. P., Hood, J. R., Koch, A. L.: Growth, cell and nuclear divisions in some bacteria. J. Gen. Microbiol. 29, 421–434 (1962)

    Google Scholar 

  • Shields, R.: Further evidence for a random transition in the cell cycle. Nature 273, 755–758 (1978)

    Google Scholar 

  • Shields, R.: Transition probability and the regulation of the cell cycle. In: Jiminez de Asua, L., Levi-Montalcini, R., Shields, R., Iacobelli, S. (eds.) Control mechanisms in animal cells, pp. 157–164. New York: Raven Press 1980

    Google Scholar 

  • Shields, R., Smith, J. A.: Cells regulate their proliferation through alterations in transition probability. J. Cell. Physiol. 91, 345–355 (1977)

    Google Scholar 

  • Shields, R., Brooks, R. F., Riddle, P. N., Capellaro, D. F., Delia, D.: Cell size, cell cycle and transition probability in mouse fibroblasts. Cell 15, 469–474 (1978)

    Google Scholar 

  • Shilo, B., Shilo, V., Simchen, G.: Cell-cycle initiation in yeast follows first-order kinetics. Nature 264, 767–770 (1976); see also Nature 267, 648–649 (1977)

    Google Scholar 

  • Smith, J. A., Martin, L.: Do cells cycle? Proc. Natl. Acad. Sci. USA 70, 1263–1270 (1973)

    Google Scholar 

  • Tyson, J. J., Hannsgen, K. B.: Analysis of a deterministic/probabilistic model of the cell division cycle. In: Rotenberg, M. (ed.) Biomathematics and cell kinetics, pp. 167–176. Amsterdam: Elsevier/North Holland 1981

    Google Scholar 

  • Tyson, J. J., Hannsgen, K. B.: The distributions of cell size and generation time in a model of the cell cycle incorporating size control and random transitions. J. Theor. Biol. 113, 29–62 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyson, J.J., Hannsgen, K.B. Cell growth and division: a deterministic/probabilistic model of the cell cycle. J. Math. Biology 23, 231–246 (1986). https://doi.org/10.1007/BF00276959

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276959

Key words

Navigation