Skip to main content

Advance Detection Techniques of Phytopathogenic Fungi: Current Trends and Future Perspectives

  • Chapter
  • First Online:
Current Trends in Plant Disease Diagnostics and Management Practices

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Plants including economically important crops are infected by a large number of fungal pathogens causing the most detrimental diseases which are responsible for considerable yield loss worldwide. Detection and diagnosis of phytopathogenic fungi are the most important steps towards developing strategies for their management. Developing direct detection assays is challenging because of existence of formae specialis, races, biotypes and strains within the species of fungal pathogens which are also changing depending upon the changing environmental conditions and crop cultivation in a particular area. Fungal plant disease diagnostics rely on a diverse technologies ranging from traditional taxonomy to advanced molecular tools. Major limitations of traditional methods include- ability of the organism to be cultured, time consuming and the requirement for extensive taxonomical knowledge. Early and accurate diagnoses of pathogens are necessary to predict the outbreaks and to have the required time for development of mitigation strategies. Now a days, molecular methods like conventional PCR, real-time PCR, nested PCR, co-operational PCR, reverse transcriptase PCR, magnetic capture-hybridisation (MCH)-PCR, loop-mediated isothermal amplification (LAMP) etc. are commonly used for phytopathogenic fungal detection. They are highly sensitive, repetitive, fast, and also allow the quantification of the target pathogen. In addition, DNA based microarray technology has also been developed in order to analyse hundreds of targets simultaneously. Some of the advanced biochemical diagnostic techniques, including, spectroscopy, imaging and biosensor have revolutionized research on detection and identification of fungal species. The advances in biosensor technologies have potential to deliver point-of-care diagnostics that match or surpass conventional standards in regards to time, accuracy and cost. However, their real application lies in achieving sensitivities comparable to the established methods and at a low cost. Recently, a novel technology, the PLEX-ID system has been developed which uses broad-range PCR amplification coupled with electrospray ionization-mass spectrometry (ESI-MS) for the direct detection of pathogens without the need to wait for growth in culture. Development of new and exciting methods for the detection and identification of phytopathogenic fungi is a continual process, as emerging and re-emerging plant pathogens continue to challenge our ability to safeguard plant health worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier, New York

    Google Scholar 

  • Almasi MA, Dehabadi SMH, Moradi A, Eftekhari Z, Ojaghkandi MA, Aghaei S (2013) Development and application of loop-mediated isothermal amplification assay for rapid detection of Fusarium Oxysporum f. Sp. lycopersici. J Plant Pathol Microbiol 4:177

    Google Scholar 

  • Aroca A, Raposo R, Lunello P (2008) A biomarker for the identification of four Phaeoacremonium species using the beta-tubulin gene as the target sequence. Appl Microbiol Biotechnol 80:1131–1140

    Article  CAS  PubMed  Google Scholar 

  • Attallah ZK, Bae J, Jansky SH, Rouse DI, Stevenson WR (2007) Multiplex real-time quantitative PCR to detect and quantify Verticillium dahliae colonization in potato lines that differ in response to Verticillium wilt. Phytopathology 97:865–872

    Article  CAS  Google Scholar 

  • Babu BK, Mesapogu S, Sharma A, Somasani SR, Arora DK (2011) Quantitative real-time PCR assay for rapid detection of plant and human pathogenic Macrophomina phaseolina from field and environmental samples. Mycologia 103:466–473

    Article  PubMed  Google Scholar 

  • Bailey AM, Mitchell DJ, Manjunath KL, Nolasco G, Niblett CL (2002) Identification to the species level of the plant pathogens Phytophthora and Pythium by using unique sequences of the ITS1 region of ribosomal DNA as capture probes for PCR Elisa. FEMS Microbiol Lett 207:153–158

    Article  CAS  PubMed  Google Scholar 

  • Bauriegel E, Herppich WB (2014) Hyperspectral and chlorophyll fluorescence imaging for early detection of plant diseases, with special reference to Fusarium spec. infections on wheat. Agriculture 4:32–57

    Article  CAS  Google Scholar 

  • Bauriegel E, Giebel A, Geyer M, Schmidt U, Herppich WB (2011) Early detection of Fusarium infection in wheat using hyper-spectral imaging. J Comput Electron Agric 75:304–312

    Article  Google Scholar 

  • Bearchell SJ, Fraaije BA, Shaw MW, Fitt BDL (2005) Wheat archive links long-term fungal pathogen population dynamics to air pollution. PNAS USA 102:5438–5442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belasque L, Gasparoto MCG, Marcassa LG (2008) Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy. Appl Opt 47(11):1922–1926

    Article  PubMed  Google Scholar 

  • Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bilodeau GJ, Koike ST, Uribe P, Martin FN (2012) Development of an assay for rapid detection and quantification of Verticillium dahliae in soil. Phytopathology 102:331–343

    Article  CAS  PubMed  Google Scholar 

  • Bindslev L, Oliver RP, Johansen B (2002) In situ PCR for detection and identification of fungal species. Mycol Res 106:277–279

    Article  CAS  Google Scholar 

  • Blasco J, Alexios N, Gomez J, Molto E (2007) Citrus sorting by identification of the most common defects using multispectral computer vision. J Food Eng 83(3):384–393

    Google Scholar 

  • Bonants P, Weerdt MH, van Gent-Pelzer M, Lacourt I, Cooke D, Duncan J (1997) Detection and identification of Phytophthora fragariae Hickman by the polymerase chain reaction. Eur J Plant Pathol 103:345–355

    Article  CAS  Google Scholar 

  • Bonants P, van Gent-Pelzer MPE, Hooftman R, Cooke D, Guy DC, Duncan JM (2004) A combination of baiting and different PCR formats, including measurement of real-time quantitative fluorescence, for the detection of Phytophthora fragariae in strawberry plants. Eur J Plant Pathol 110:689–702

    Article  CAS  Google Scholar 

  • Bravo C, Moshou D, West J, McCartney A, Ramon H (2003) Early disease detection in wheat fields using spectral reflectance. Biosyst Eng 84:137–145

    Article  Google Scholar 

  • Bravo C, Moshou D, Oberti R, West J, McCartney A, Bodria L, Ramon H (2004) Foliar disease detection in the field using optical sensor fusion. CIGR J Sci Res Dev 6:1–14

    Google Scholar 

  • Buerling K, Hunsche M, Noga G (2010) Quantum yield of non-regulated energy dissipation in PSII (Y(NO)) for early detection of leaf rust (Puccinia triticina) infection in susceptible and resistant wheat (Triticum aestivum L.) cultivars. Precis Agric 11:703–716

    Article  Google Scholar 

  • Bürling K, Hunsche M, Noga G (2011a) Use of blue–green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat. J Plant Physiol 168:1641–1648

    Article  CAS  PubMed  Google Scholar 

  • Bürling K, Hunsche M, Noga G (2011b) UV-induced fluorescence spectra and lifetime determination for detection of leaf rust (Puccinia triticina) in susceptible and resistant wheat (Triticum aestivum) cultivars. Funct Plant Biol 38:337–345

    Article  Google Scholar 

  • Bürling K, Hunsche M, Noga G (2012) Presymptomatic detection of powdery mildew infection in winter wheat cultivars by laser-induced fluorescence. Appl Spectrosc 66:1411–1419

    Article  CAS  PubMed  Google Scholar 

  • Cagni D, Ghizzoni C (2000) The role of non-volatile compounds in flavor science: applications of HPLC-mass spectrometry technique. Flavour and fragrance chemistry. In: Lanzotti V, Taglialatela-Scafati O (eds) Flavour and fragrance chemistry. Kluwer Academic Publishers, Dordrecht, pp 221–226

    Google Scholar 

  • Cerovic ZG, Samson G, Morales F, Tremblay N, Moya I (1999) Ultraviolet induced fluorescence for plant monitoring: present state and prospects. Agronomie 19:543–578

    Article  Google Scholar 

  • Chaerle L, Lenk S, Hagenbeek D, Buschmann C, Van Der Straeten D (2007) Multicolor fluorescence imaging for early detection of the hypersensitive reaction to tobacco mosaic virus. J Plant Physiol 164:253–262

    Article  CAS  PubMed  Google Scholar 

  • Chalupova J, Raus M, Sedlarova M, Sebela M (2013) Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnol Adv. doi:10.1016/j.biotechadv.2013.11.002

    PubMed  Google Scholar 

  • Chen S, Cao Y, Li T, Wu X (2014) Simultaneous detection of three wheat pathogenic fungal species by multiplex PCR. Phytoparasitica. doi:10.1007/s12600-014-0442-1

    Google Scholar 

  • Concina I, Falasconi M, Gobbi E, Bianchi F, Musci M, Mattarozzi M, Pardo M, Mangia A, Careri M, Sbeveglieri G (2009) Early detection of microbial contamination in processed tomato by electronic nose. Food Control 20:837–880

    Article  CAS  Google Scholar 

  • Cooke DEL, Schena L, Cacciola SO (2007) Tools to detect, identify and monitor Phytophthora species in natural ecosystems. J Plant Pathol 89:13–28

    CAS  Google Scholar 

  • Costa G, Noferini M, Fiori G, Spinelli F (2007) Innovative application of nondestructive techniques for fruit quality and disease diagnosis. Acta Horticulturae 753(1):275–282

    Google Scholar 

  • Crouch S, Holler FA, Skoog DA (2007) Principles of instrumental analysis. Thomson Brooks/Cole, Belmont. ISBN 0-495-01201-7

    Google Scholar 

  • De Lacy Costello BPJ, Evans P, Ewen RJ, Gunson HE, Jones PRH, Ratcliffe NM, Spencer-Phillips PTN (2001) Gas chromatography mass spectrometry analyses of volatile organic compounds from potato tubers inoculated with Phytophthora infestans or Fusarium coeruleum. Plant Pathol 50:489–496

    Article  Google Scholar 

  • Delwiche SR, Kim MS (2000) Hyperspectral imaging for detection of scab in wheat. Proc SPIE 4203:13–20

    Article  Google Scholar 

  • Dieffenbach CW, Lowe TMJ, Dveksler GS (1993) General concepts for PCR primer design. PCR Methods Appl Cold Spring Harb Lab 3:S30–S37

    CAS  Google Scholar 

  • Diguta CF, Rousseaux S, Weidmann S, Bretin N, Vincent B, Guilloux-Benatier M, Alexandre H (2010) Development of a qPCR assay for specific quantification of Botrytis cinerea on grapes. FEMS Microbiol Lett 313:81–87

    Article  CAS  PubMed  Google Scholar 

  • Dowell FE, Ram MS, Seitz LM (1999) Predicting scab, vomitoxin and ergosterol in single wheat kernels using near-infrared spectroscopy. Cereal Chem 76:573–576

    Article  CAS  Google Scholar 

  • Drenth A, Wagals G, Smith B, Sendall B, O’Dwyer C, Irvine G, Irwin JAG (2006) Development of a DNA-based method for the detection and identification of Phytophthora species. Australas Plant Pathol 35(2):147–159

    Google Scholar 

  • Duan Y, Ge C, Zhang X, Wang J, Zhou M (2014a) A rapid detection method for the plant pathogen Sclerotinia sclerotiorum based on loop-mediated isothermal amplification (LAMP). Australas Plant Pathol 43:61–66

    Article  CAS  Google Scholar 

  • Duan YB, Ge CY, Zhang XK, Wang JX, Zhou MG (2014b) Development and evaluation of a novel and rapid detection assay for Botrytis cinerea based on loop-mediated isothermal amplification. PLoS One 9:e111094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dubey SC, Priyanka K, Upadhyay BK (2014) Development of molecular markers and probes based on TEF-1α, β-tubulin and ITS gene sequences for quantitative detection of Fusarium oxysporum f. sp. ciceris by using real-time PCR. Phytoparasitica 42:355–366

    Article  CAS  Google Scholar 

  • Durai M, Dubey SC, Tripathi A (2012) Genetic diversity analysis and development of SCAR marker for detection of Indian populations of Fusarium oxysporum f. sp. ciceris causing chickpea wilt. Folia Microbiol 57:229–235

    Article  CAS  Google Scholar 

  • Egger KN (1995) Molecular analysis of ectomycorrhizal fungal communities. Canadian J Bot 73:1415–1415

    Google Scholar 

  • Eibel P, Wolf GA, Koch AE (2005) Detection of Tilletia caries, causal agent of common bunt of wheat by ELISA and PCR. J Phytopathol 153:297–306

    Article  CAS  Google Scholar 

  • Eifler J, Martinelli E, Santonico M, Capuano R, Schild D et al (2011) Differential Detection of potentially hazardous Fusarium species in wheat grains by an electronic nose. PLoS One 6(6):e21026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elsas DJ, Duarte GF, Keijzer-Wolters A, Smit E (2000) Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J Microbiol Methods 43:133–151

    Article  PubMed  Google Scholar 

  • Erukhimovitch V, Tsror L, Hazanovsky M, Talyshinsky M, Mukmanov I, Souprun Y, Huleihel M (2005) Identification of fungal phyto-pathogens by Fourier-transform infrared (FTIR) microscopy. J Agric Technol 1:145–152

    Google Scholar 

  • Falasconi M, Gobbi E, Pardo M, Torre MD, Bresciani A, Sberveglieri G (2005) Detection of toxigenic strains of Fusarium verticillioides in corn by electronic olfactory system. Sensors Actuators B Chem 108:250–257

    Article  CAS  Google Scholar 

  • Fraaije BA, Lovell DJ, Coelho JM, Baldwin S, Hollomon DW (2001) PCR-based assays to assess wheat varietal resistance to blotch (Septoria tritici and Stagonospora nodorum) and rust (Puccinia striiformis and Puccinia recondite) diseases. Eur J Plant Pathol 107:905–917

    Article  CAS  Google Scholar 

  • Ganeshamoorthi P, Dubey SC (2013) Phylogeny analysis of Indian strains of Rhizoctonia solani isolated from chickpea and development of sequence characterized amplified region (SCAR) marker for detection of the pathogen. Afr J Microbiol Res 7:5516–5525

    CAS  Google Scholar 

  • Garcia-Gonzalez DL, Aparicio R (2002) Sensors: From biosensors to the electronic nose. Grasasy Aceites 53:96–114

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Ge CQ, Xie CS, Cai SZ (2007) Preparation and gas-sensing properties of Ce-doped ZnO thin film sensors by dip-coating. Mater Sci Eng B 137:53–58

    Article  CAS  Google Scholar 

  • Ghosh R, Nagavardhini A, Sengupta A, Sharma M (2015) Development of loop-mediated isothermal amplification (LAMP) assay for rapid detection of Fusarium oxysporum f. sp. ciceris - wilt pathogen of chickpea. BMC Res Notes 8:40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gómez-Alpizar L, Saalau E, Picado I, Tambong JT, Saborio F (2011) A PCR-RFLP assay for identification and detection of Pythium myriotylum, causal agent of the cocoyam root rot disease. Lett Appl Microbiol 52(3):185–192

    Google Scholar 

  • Graeff S, Link J, Claupein W (2006) Identification of powdery mildew (Erysiphe graminis sp. tritici) and take-all disease (Gaeumannomyces graminis sp. tritici) in wheat (Triticum aestivum L.) by means of leaf reflectance measurements. Cent Eur J Biol 1:275–288

    Google Scholar 

  • Gudnason H, Dufva M, Bang DD, Wolff A (2007) Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature. Nucleic Acids Res 35:e127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo JR, Schnieder F, Beyer M, Verreet JA (2005) Rapid detection of Mycosphaerella graminicola in wheat using reverse transcription-PCR assay. J Phytopathol 153:674–679

    Article  CAS  Google Scholar 

  • Haase AT, Retzel EF, Staskus KA (1990) Amplification and detection of lentiviral DNA inside cells. PNAS USA 87:4971–4975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harmon PF, Dunkle LD, Latin R (2003) A rapid PCR-base method for the detection of Magnaporthe oryzae from infected perennial ryegrass. Plant Dis 87:1072–1076

    Article  CAS  Google Scholar 

  • Harvey D (2000) Spectroscopic methods of analysis. In: Modern analytical chemistry Chapter 10. Mc Graw Hill Publishers, USA, pp 368–460

    Google Scholar 

  • Hayden MJ, Good G, Sharp PJ (2002) Sequence tagged microsatellite profiling (STMP): improved isolation of DNA sequence flanking target SSRs. Nucleic Acids Res 30:e129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herrmann R, Onkelinx C (1986) Quantities and units in clinical chemistry: nebulizer and flame properties in flame emission and absorption spectrometry (recommendations 1986). Pure Appl Chem 58:1737–1742

    Article  CAS  Google Scholar 

  • Huang JF, Apan A (2006) Detection of Sclerotinia rot disease on celery using hyperspectral data and partial least squares regression. J Spat Sci 51:129–142

    Article  Google Scholar 

  • Ibrahim AD, Hussaini H, Sani A, Aliero AA, Yakubu SE (2011) Volatile metabolites profiling to discriminate diseases of tomato fruits inoculated with three toxigenic fungal pathogens. Res Biotechnol 2:14–22

    Google Scholar 

  • Jacobsen CS (1995) Microscale detection of specific bacterial-DNA in soil with a magnetic capture-hybridization and PCR amplification assay. Appl Environ Microbiol 61:3347–3352

    CAS  PubMed Central  PubMed  Google Scholar 

  • James D, Varga A, Pallas V, Candresse T (2006) Strategies for simultaneous detection of multiple plant viruses. Can J Plant Pathol 28:16–29

    Article  CAS  Google Scholar 

  • Keiper FJ, Capio E, Grcic M, Wallwork H (2007) Development of sequence tagged microsatellites for the barley net blotch pathogen Pyrenophora teres. Mol Ecol Notes 7:664–666

    Article  CAS  Google Scholar 

  • Kropp B, Albee S, Flint M, Zambino P, Szabo L, Thomson SV (1995) Early detection of systemic rust infections of dyers woad (Isatis tinctoria) using the polymerase chain reaction. Weed Sci 43:6–12

    Google Scholar 

  • Kuckenberg J, Tartachnyk I, Schmitz-Eiberger M, Noga G (2007) Early detection of leaf rust and powdery mildew infections on wheat (Triticum aestivum L.) leaves by PAM fluorescence imaging. Precis Agric 8:515–521

    Google Scholar 

  • Kulik T, Jestoi M, Okorski A (2011) Development of TaqMan assays for the quantitative detection of Fusarium avenaceum/Fusarium tricinctum and Fusarium poae esyn1 genotypes from cereal grain. FEMS Microbiol Lett 314:49–56

    Article  CAS  PubMed  Google Scholar 

  • Lakshmi MJ, Chowdappa P, Mahmood R (2014) Secondary metabolite profiling of plant pathogenic Alternaria species by matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Indian Phytopathol 67:374–382

    Google Scholar 

  • Landgraf A, Reckmann B, Pingoud A (1991) Direct analysis of polymerase chain reaction products using enzyme-linked-immunosorbent-assay techniques. Anal Biochem 198:86–91

    Article  CAS  PubMed  Google Scholar 

  • Langrell SRH, Barbara DJ (2001) Magnetic capture hybridization for improved PCR detection of Nectria galligena from lignified apple extracts. Plant Mol Biol Report 19:5–11

    Article  CAS  Google Scholar 

  • Larena I, Salazar O, Gonza’lez V, Julia’n MC, Rubio V (1999) Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for ascomycetes. J Biotechnol 75:187–194

    Article  CAS  PubMed  Google Scholar 

  • Larsen JE, Hollingsworth CR, Flor J, Dornbusch MR, Simpson NL, Samac DA (2007) Distribution of Phoma sclerotioides on alfalfa and winter wheat crops in the north central United States. Plant Dis 91:551–558

    Article  CAS  Google Scholar 

  • Larsolle A, Muhammed HH (2007) Measuring crop status using multivariate analysis of hyperspectral field reflectance with application to disease severity and plant density. Precis Agric 8:37–47

    Article  Google Scholar 

  • Leisova L, Kucera L, Minarikova V, Ovesna J (2005) AFLP-based PCR markers that differentiate spot and net forms of Pyrenophora teres. Plant Pathol 54:66–73

    Article  CAS  Google Scholar 

  • Lenk S, Buschmann C (2006) Distribution of UV-shielding of the epidermis of sun and shade leaves of the beech (Fagus sylvatica L.) as monitored by multi-colour fluorescence imaging. J Plant Physiol 163(12):1273–1283

    Google Scholar 

  • Lenk S, Chaerle L, Pfundel EE, Langsdorf G, Hagenbeek D, Lichtenthaler HK, Van Der Straeten D, Buschmann C (2007) Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications. J Exp Bot 58(4):807–814

    Google Scholar 

  • Leufen G, Noga G, Hunsche M (2014) Proximal sensing of plant-pathogen interactions in spring barley with three fluorescence techniques. Sensors 14:11135–11152

    Article  PubMed Central  PubMed  Google Scholar 

  • Li C, Krewer G, Kays SJ (2009) Blueberry postharvest disease detection using an electronic nose. ASABE Paper No. 096783, ASABE Annual International Meeting, Reno, NV, June 21–June 24

    Google Scholar 

  • Lievens B, Brouwer M, Vanachter ACRC, Levesque CA, Thomman BPHJ (2003) Design and development of a DNA array for rapid detection and identification of multiple tomato vascular wilt pathogens. FEMS Microbiol Lett 223:113–122

    Article  CAS  PubMed  Google Scholar 

  • Lievens B, Brouwer M, Vanachter ACRC, Levesque CA, Thomma BPHJ (2005) Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray. Environ Microbiol 7:1698–1710

    Article  CAS  PubMed  Google Scholar 

  • Lin YH, Chang JY, Liu ET, Chao CP, Huang JW, Chang PL (2009) Development of a molecular marker for specific detection of Fusarium oxysporum f.sp. cubense race 4. Eur J Plant Pathol 123:353–365

    Article  CAS  Google Scholar 

  • Liu M, McCabe E, Chapados JT, Carey J, Wilson SK, Tropiano R, Redhead SA, Lévesque CA, Hambleton S (2015) Detection and identification of selected cereal rust pathogens by TaqMan® real-time PCR. Can J Plant Pathol l37:92–105

    Article  CAS  Google Scholar 

  • Long AA (1998) In-situ polymerase chain reaction: foundation of the technology and today’s options. Eur J Histochem 42:101–109

    CAS  PubMed  Google Scholar 

  • López MM, Bertolini E, Olmos A, Caruso P, Gorris MT, Llop P, Penyalver R, Cambra M (2003) Innovative tools for detection of plant pathogenic viruses and bacteria. Int Microbiol 6:233–243

    Article  CAS  PubMed  Google Scholar 

  • Luo G, Mitchell TG (2002) Rapid identification of pathogenic fungi directly from cultures by using multiplex PCR. J Clin Microbiol 40:2860–2865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma Z, Michialides TJ (2005) Advances in undertanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot 24:853–863

    Article  CAS  Google Scholar 

  • Macia-Vicente JG, Jansson HB, Talbot NJ, Lopez-Llorca LV (2009) Real-time PCR quantification and live-cell imaging of endophytic colonization of barley (Hordeum vulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. New Phytol 182:213–228

    Article  CAS  PubMed  Google Scholar 

  • Mahlein AK (2010) Detection, identification, and quantification of fungal diseases of sugar beet leaves using imaging and non-imaging hyperspectral techniques. Inaugural-Dissertation. Institute of Crop Science and Rescource Conservation – Phytomedicine. Rheinischen Friedrich-Wilhelms-Universität

    Google Scholar 

  • Malvick DK, Impullitti AE (2007) Detection and quantification of Phialophora gregata in soybean and soil samples with a quantitative, real-time PCR assay. Plant Dis 91:736–742

    Article  CAS  Google Scholar 

  • Martin KJ, Rygiewicz PT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5:28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martos S, Torres E, El Bakali MA, Raposo R, Gramaje D, Armengol J, Luque J (2011) Co-operational PCR coupled with dot blot hybridization for the detection of Phaeomoniella chlamydospora on infected grapevine wood. J Phytopathol 159:247–254

    Article  CAS  Google Scholar 

  • Matsuda Y, Sameshima T, Moriura N, Inoue K, Nonomura T, Kakutani K, Nishimura H, Kusakari S, Takamatsu S, Toyoda H (2005) Identification of individual powdery mildew fungi infecting leaves and direct detection of gene expression by single conidium polymerase chain reaction. Phytopathol 95:1137–1143

    Google Scholar 

  • McCartney HA, Foster SJ, Fraaije BA, Ward E (2003) Molecular diagnostics for fungal plant pathogens. Pest Manag Sci 59:129–142

    Article  CAS  PubMed  Google Scholar 

  • Moalemiyan M, Vikram A, Kushalappa AC (2007) Detection and discrimination of two fungal diseases of mango (cv. Keitt) fruits based on volatile metabolite profiles using GC/MS. Postharvest Biol Technol 45:117–125

    Article  CAS  Google Scholar 

  • Moalemiyan M, Vikram A, Kushalappa AC, Yaylayan V (2006) Volatile metabolite profiling to detect and discriminate stem-end rot and anthracnose diseases of mango fruits. Plant Pathol 55:792–802

    Google Scholar 

  • Moradi M, Oerke EC, Steiner U, Tesfaye D, Schellander K, Dehne HW (2010) Microbiological and Sybr®Green Real-Time PCR detection of major Fusarium head blight pathogens on wheat ears. Microbiology 79:646–654

    Article  CAS  Google Scholar 

  • Mori Y, Nagamine K, Tomita N, Notomi T (2001) Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289:150–154

    Article  CAS  PubMed  Google Scholar 

  • Moshou D, Bravo C, Oberti R, West J, Bodria L, McCartney A, Ramon H (2005) Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps. Real-Time Imaging 11:75–83

    Article  Google Scholar 

  • Moshou D, Bravo C, Wahlen S, West J, McCartney A, De Baerdemaeker J, Ramon H (2006) Simultaneous identification of plant stresses and diseases in arable crops using proximal optical sensing and self-organising maps. Precis Agric 7:149–164

    Article  Google Scholar 

  • Moshou D, Bravo C, West J, Wahlen S, McCartney A, Ramon H (2004) Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks. Comput Electron Agr 44(3):173–188

    Google Scholar 

  • Myers RM, Fischer SG, Lerman LS, Manialis T (1985) Nearby all base substitution in DNA fragments joined to a GC clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 13:3131–3145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nanayakkara UN, Singh M, Al-Mugharabi KI, Peters RD (2009) Detection of Phytophthora erythroseptica in above-ground potato tissues, progeny tubers, stolons and crop debris using PCR techniques. Am J Potato Res 86:239–245

    Article  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okamoto H, Suzuki Y, Kataoka T, Sakai K (2009) Unified hyperspectral imaging methodology for agricultural sensing using software framework. Acta Horticulturae 824:49–56

    Google Scholar 

  • Okubara PA, Schroeder KL, Paulitz TC (2008) Identification and quantification of Rhizoctonia solani and R. oryzae using real-time polymerase chain reaction. Phytopathology 98:837–847

    Article  CAS  PubMed  Google Scholar 

  • Olmos A, Bertolini E, Cambra M (2002) Simultaneous and co-operational amplification (CoPCR): a new concept for detection of plant viruses. J Virol Methods 106:51–59

    Article  CAS  PubMed  Google Scholar 

  • Pan L, Zhang W, Zhu N, Mao S, Tu K (2014) Early detection and classification of pathogenic fungal disease in post-harvest strawberry fruit by electronic nose and gas chromatography-mass spectrometry. Food Res Int 62:162–168

    Google Scholar 

  • Paolesse R, Alimelli A, Martinelli E, Natale CD, D’Amico A, D’Egidio MG, Aureli G, Ricelli A, Fanelli C (2006) Detection of fungal contamination of cereal grain samples by an electronic nose. Sensors Actuators B Chem 119:425–430

    Article  CAS  Google Scholar 

  • Pearson CAS, Leslie JE, Schweak EW (1987) Host preference co-related with chlorate resistance in Macrophomina phaseolina. Plant Dis 71:828–831

    Article  Google Scholar 

  • Persaud KC, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299:352–355

    Google Scholar 

  • Pettersson H, Ã…berg L (2003) Near infrared spectroscopy for determination of mycotoxins in cereals. Food Control 14:229–232

    Article  CAS  Google Scholar 

  • Pfeffer PE, Bago B, Shachar-Hill Y (2001) Exploring mycorrhizal function with NMR spectroscopy. New Phytol 150:543–553

    Article  CAS  Google Scholar 

  • Porter-jordan K, Rosenberg EI, Keiser JF, Gross JD, Ross AM, Nasim S, Garrett CT (1990) Nested polymerase chain reaction assay for the detection of cytomegalovirus overcomes false positives caused by contamination with fragmented DNA. J Med Virol 30:85–91

    Article  CAS  PubMed  Google Scholar 

  • Prithiviraj B, Vikram A, Kushalappa AC, Yaylayan V (2004) Volatile metabolite profiling for the discrimination of onion bulbs infected by Erwinia carotovora sp. carotovora, Fusarium oxysporum and Botrytis allii. Eur J Plant Pathol 110:371–377

    Article  CAS  Google Scholar 

  • Prospero S, Black JA, Winton LM (2004) Isolation and characterization of microsatellite markers in Phytophthora ramorum, the causal agent of sudden oak death. Mol Ecol Resour 4:672–624

    Article  CAS  Google Scholar 

  • Ramanujam N, Mitchell MF, Mahadevan A, Thomsen S, Silva E, Richards-Kortum R (1994) Luorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia. Gynecol Oncol 52:31–38

    Article  CAS  PubMed  Google Scholar 

  • Rigotti S, Gindro K, Richter H, Viret O (2002) Characterization of molecular markers for specific and sensitive detection of Botrytis cinerea Pers:Fr in strawberry (Fragaria_ananassa Duch) using PCR. FEMS Microbiol Lett 209:169–174

    CAS  PubMed  Google Scholar 

  • Rytkönen KT, Williams TA, Renshaw GM, Primmer CR, Nikinmaa M (2011) Molecular evolution of the metazoan PHD-HIF oxygen-sensing system. Mol Biol Evol 28:1913–1926

    Article  CAS  PubMed  Google Scholar 

  • Salman A, Lapidot I, Pomerantz A, Tsror L, Hammody Z, Moreh R, Huleihel M, Mordechai S (2012) Detection of Fusarium oxysporum fungal isolates using ATR spectroscopy. J Spectrosc 27:551–556

    Article  CAS  Google Scholar 

  • Sankaran S, Mishra A, Ehsani R, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72:1–13

    Article  Google Scholar 

  • Schena L, Nigro F, Ippolito A, Gallitelli D (2004) Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. Eur J Plant Pathol 110:893–908

    Article  CAS  Google Scholar 

  • Schena L, Li Destri Nicosia MG, Sanzani SM, Faedda R, Ippolito A, Cacciola SO (2013) Development of quantitative pcr detection methods for phytopathogenic fungi and oomycetes. J Plant Pathol 95:7–24

    CAS  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 109:6241–6246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schroeder KL, Okubara PA, Tambong JT, Levesque CA, Paulitz TC (2006) Identification and quantification of pathogenic Pythium spp. from soils in eastern Washington using real-time polymerase chain reaction. Phytopathology 96:637–647

    Article  CAS  PubMed  Google Scholar 

  • Shamloul AM, Hadidi A (1999) Sensitive detection of potato spindle tuber and temperate fruit tree viroids by reverse transcription-polymerase chain reaction-probe capture hybridization. J Virol Methods 80:145–155

    Article  CAS  PubMed  Google Scholar 

  • Sheridan GEC, Masters CI, Shallcross JA, Mackey BM (1998) Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl Environ Microbiol 64:1313–1318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simner PJ, Uhl JR, Hall L, Weber MW, Walchak RC, Buckwalter S, Wengenack NL (2013) Broad-range direct detection and identification of fungi by use of the PLEX-ID PCR-Electrospray Ionization Mass Spectrometry (ESI-MS) system. J Clin Microbiol 51:1699–1706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith OP, Peterson GL, Beck RJ, Schaad NW, Bonde MR (1996) Development of a PCR-based method for identification of Tilletia indica, causal agent of karnal bunt of wheat. Phytopathology 86:115–122

    Article  CAS  Google Scholar 

  • Stackebrandt E, Liesack W, Witt D (1992) Ribosomal RNA and rDNA sequences analyses. Gene 115:255–260

    Article  CAS  PubMed  Google Scholar 

  • Summy KR, Little CR (2008) Using color infrared imagery to detect Sooty Mold and fungal pathogens of glasshouse-propagated plants. Hortscience 43(5):1485–1491

    Google Scholar 

  • Tan DHS, Sigler L, Gibas CFC, Fong IW (2008) Disseminated fungal infection in a renal transplant recipient involving Macrophomina phaseolina and Scytalidium dimidiatum: case report and review of taxonomic changes among medically important members of the Botryosphaeriaceae. Med Mycol 46:285–292

    Article  CAS  PubMed  Google Scholar 

  • Taylor TN, Remy W, Hass H (1992) Parasitism in a 400-million-year-old green alga. Nature 357:493–494

    Article  Google Scholar 

  • Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One 7:e40863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tomita N, Mori Y, Kanda H, Notomi T (2008) Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3:877–882

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson JA, Dickinson MJ, Boonham N (2010) Detection of Botrytis cinerea by loop-mediated isothermal amplification. Lett Appl Microbiol 51:650–657

    Article  CAS  PubMed  Google Scholar 

  • Varga A, James D (2006) Real-time RT-PCR and SYBR Green I melting curve analysis for the identification of Plum pox virus strains C, EA, and W: effect of amplicon size, melt rate, and dye translocation. J Virol Meth 132:146–153

    Google Scholar 

  • Vikram A, Prithiviraj B, Hamzehzarghani H, Kushalappa AC (2004) Volatile metabolite profiling to discriminate diseases of McIntosh apples inoculated with fungal pathogens. J Sci Food Agric 84:1333–1340

    Article  CAS  Google Scholar 

  • Vilgalys R, Gonzalez D (1990) Organization of ribosomal DNA in the basidiomycete Thanatephorus praticola. Curr Genet 18:277–280

    Article  CAS  PubMed  Google Scholar 

  • Walcott RR, Gitaitis RD, Langston DB (2004) Detection of Botrytis aclada in onion seed using magnetic capture hybridization and the polymerase chain reaction. Seed Sci Technol 32:425–438

    Article  Google Scholar 

  • Wang PH, Lo HS, Yeh Y (2001) Identification of F. oxysporum cucumerinum and F. oxysporum luffae by RAPD-generated DNA probes. Lett Appl Microbiol 33:397–401

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Wilson AD (2013) Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors 13:2295–2348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson AD, Baietto M (2009) Applications and advances in electronic-nose technologies. Sensors 9:5099–5148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woodcock T, Downey G, Donnell CPO, Summy KR, Little CR (2008) Near Infrared Spectrosc. Using color infrared imagery to detect sooty mold and fungal pathogens of glasshouse-propagated plants. Hortscience 43:1485–1491

    Google Scholar 

  • Wu D, Feng L, Zhang C, He Y (2008) Early detection of Botrytis cinerea on eggplant leaves based on visible and near-infrared spectroscopy. Trans ASABE 51:1133–1139

    Article  Google Scholar 

  • Xu ML, Melchinger AE, Lubberstedt T (1999) Species-specific detection of the maize pathogens Sporisorium reiliana and Ustilago maydis by dot blot hybridization and PCR-based assays. Plant Dis 83:390–395

    Article  CAS  Google Scholar 

  • Yan L, Zhang C, Ding L, Ma Z (2008) Development of a real-time PCR assay for the detection of Cladosporium fulvum in tomato leaves. J Appl Microbiol 104:1417–1424

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Jensen JD, Svensson B, Jorgensen HJL, Collinge DB, Finnie C (2010) Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett. Proteomics 10:3748–3755

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Ding L, Liu X, Yang J, Ma Z (2009) Detection of Sclerotinia sclerotiorum in planta by a real-time PCR assay. J Phytopathol 157:465–469

    Article  CAS  Google Scholar 

  • Zeng Q, Hansson P, Wang X (2005) Specific and sensitive detection of the conifer pathogen Gremmeniella abietina by nested PCR. BMC Microbiol 5:65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang AW, Hartman GL, Riccinoi L, Chen WD, Ma RZ, Pedersen WL (1997) Using PCR to distinguish Diaporthe phaseolorum and Phomopsis longicolla from other soybean fungal pathogens and to detect them in soybean tissues. Plant Dis 81:1143–1149

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang J, Wang Y, Zheng X (2005) Molecular detection of Fusarium oxysporum f.sp. niveum and Mycosphaerella melonis in infected plant tissues and soil. FEMS Microbiol Lett 249:39–47

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, McCarthy ML, Smart CD (2008) A macroarray system for the detection of fungal and oomycete pathogens of solanaceous crops. Plant Dis 92:953–960

    Article  CAS  Google Scholar 

  • Zhu BL, Xie CS, Wu J, Zeng DW, Wang AH, Zhao XZ (2006) Influence of Sb, In and Bi dopants on the response of ZnO thick films to VOCs. Mater Chem Phys 96:459–465

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pardeep Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, P., Akhtar, J., Kandan, A., Kumar, S., Batra, R., Dubey, S.C. (2016). Advance Detection Techniques of Phytopathogenic Fungi: Current Trends and Future Perspectives. In: Kumar, P., Gupta, V., Tiwari, A., Kamle, M. (eds) Current Trends in Plant Disease Diagnostics and Management Practices. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-27312-9_12

Download citation

Publish with us

Policies and ethics