Skip to main content

Logical Gates and Circuits Implemented in Slime Mould

  • Chapter
  • First Online:
Advances in Physarum Machines

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 21))

Abstract

We overview families of Boolean logical gates and circuits implemented in computer models and experimental laboratory prototypes of computing devices made of living slime mould Physarum polycephalum. These include attraction gates, based on chemo-tactic behaviour of slime mould; ballistic gates, employing inertial movement of the slime mould’s active zones and a repulsion between growing zones; repellent gates, exploited photo avoidance of P. polycephalum; frequency gates, based on modification of electrical potential oscillations frequency in protoplasmic tubes; fluidic gates, where a tactical response of the protoplasmic tubes is used for the actuation of two- and four-input logical gates and memory devices; and circuits based on quantitative transformations which completely avoids spatial propagation, branching and crossings in the design of circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    LEDs were chosen as the repellent input due to their comparative energy efficiency, long life span and low cost of manufacture, all of which are key properties for alternative computing technologies.

  2. 2.

    Experiments are done by Theresa Schubert, Bauhaus University, Weimar, Germany.

References

  1. Adamatzky, A.: Manipulating substances with Physarum polycephalum. Mater. Sci. Eng. C 30(8), 1211–1220 (2010)

    Article  Google Scholar 

  2. Adamatzky, A.: Slime mould logical gates: exploring ballistic approach (2010). arXiv preprint arXiv:1005.2301

  3. Adamatzky, A.: Slime mould tactile sensor. Sens. Actuators B Chem. 188, 38–44 (2013)

    Article  Google Scholar 

  4. Adamatzky, A.: Towards slime mould colour sensor: recognition of colours by Physarum polycephalum. Org. Electron. 14(12), 3355–3361 (2013)

    Article  Google Scholar 

  5. Adamatzky, A., Schubert, T.: Slime mold microfluidic logical gates. Mater. Today 17(2), 86–91 (2014)

    Article  Google Scholar 

  6. Aldrich, H.: Cell Biology of Physarum and Didymium V1: Organisms, Nucleus, and Cell Cycle. Elsevier, Amsterdam (2012)

    Google Scholar 

  7. Cheow, L.F., Yobas, L., Kwong, D.-L.: Digital microfluidics: droplet based logic gates. Appl. Phys. Lett. 90(5), 054107 (2007)

    Article  Google Scholar 

  8. De Lacy, B., Costello, A.A., Jahan, I., Zhang, L.: Towards constructing one-bit binary adder in excitable chemical medium. Chem. Phys. 381(1), 88–99 (2011)

    Article  Google Scholar 

  9. Fingerle, J., Gradmann, D.: Electrical properties of the plasma membrane of microplasmodia of Physarum polycephalum. J. Membr. Biol. 68(1), 67–77 (1982)

    Article  Google Scholar 

  10. Heilbrunn, L.V., Daugherty, K.: The electric charge of protoplasmic colloids. Physiol. Zool. 12(1), 1–12 (1939)

    Article  Google Scholar 

  11. Iwamura, T.: Electric impedance of the plasmodium of a slime mold, Physarum polycephalum. Cytologia 17(4), 322–328 (1952)

    Article  Google Scholar 

  12. Jones, J.: Passive vs active approaches in particle approximations of reaction-diffusion computing. Int. J. Nanotechnol. Mol. Comput. 1(3), 37–63 (2009)

    Article  Google Scholar 

  13. Jones, J., Adamatzky, A.: Towards Physarum binary adders. Biosystems 101(1), 51–58 (2010)

    Article  Google Scholar 

  14. Jones, J., Whiting, J.G.H., Adamatzky, A.: Quantitative transformation for implementation of adder circuits in physical systems. Biosystems 134, 16–23 (2015)

    Article  Google Scholar 

  15. Kamiya, N., Abe, S.: Bioelectric phenomena in the myxomycete plasmodium and their relation to protoplasmic flow. J. Colloid Sci. 5(2), 149–163 (1950)

    Article  Google Scholar 

  16. Kirby, B.J.: Micro-and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  17. Knowles, D.J., Carlile, M.J.: The chemotactic response of plasmodia of the myxomycete Physarum polycephalum to sugars and related compounds. J. Gen. Microbiol. 108(1), 17–25 (1978)

    Article  Google Scholar 

  18. Marr, D.W.M., Munakata, T.: Micro/nanofluidic computing. Commun. ACM 50(9), 64–68 (2007)

    Article  Google Scholar 

  19. Mayne, R., Adamatzky, A.: Slime mould foraging behaviour as optically-coupled logical operations. Int. J. Gen. Syst. 44(3), 305–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mayne, R., Adamatzky, A.: Toward hybrid nanostructure-slime mould devices. Nano LIFE 5(01), 1450007 (2015)

    Article  Google Scholar 

  21. Mayne, R., Adamatzky, A.: Towards hybrid nanostructure-slime mould devices. Nano LIFE 5(1), 140007 (2015)

    Article  Google Scholar 

  22. Mayne, R., Tsompanas, M.-A., Sirakoulis, G.C., Adamatzky, A.: Towards a slime mould-FPGA interface. Biomed. Eng. Lett. 5(1), 51–57 (2015)

    Article  Google Scholar 

  23. Mosadegh, B., Kuo, C.-H., Tung, Y.-C., Torisawa, Y.-S., Bersano-Begey, T., Tavana, H., Takayama, S.: Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices. Nat. Phys. 6(6), 433–437 (2010)

    Article  Google Scholar 

  24. Prakash, M., Gershenfeld, N.: Microfluidic bubble logic. Science 315(5813), 832–835 (2007)

    Article  Google Scholar 

  25. Seifriz, W.: A theory of protoplasmic streaming. Science 86(2235), 397–398 (1937)

    Article  Google Scholar 

  26. Steinbock, O., Tóth, Á., Showalter, K.: Navigating complex labyrinths: optimal paths from chemical waves. Science 210, 868–868 (1995)

    Article  Google Scholar 

  27. Tabeling, P.: Introduction to Microfluidics. Oxford University Press, Oxford (2010)

    Google Scholar 

  28. Takagi, S., Ueda, T.: Emergence and transitions of dynamic patterns of thickness oscillation of the plasmodium of the true slime mold Physarum polycephalum. Physica D 237, 420–427 (2008)

    Article  Google Scholar 

  29. Takamatsu, A., Fujii, T., Yokota, H., Hosokawa, K., Higuchi, T., Endo, I.: Controlling the geometry and the coupling strength of the oscillator system in plasmodium of Physarum polycephalum by microfabricated structure. Protoplasma 210(3–4), 164–171 (2000)

    Article  Google Scholar 

  30. Tanyeri, M., Ranka, M., Sittipolkul, N., Schroeder, C.M.: A microfluidic-based hydrodynamic trap: design and implementation. Lab Chip 11(10), 1786–1794 (2011)

    Article  Google Scholar 

  31. Tsuda, S., Aono, M., Gunji, Y.-P.: Robust and emergent physarum logical-computing. Biosystems 73, 45–55 (2004)

    Article  Google Scholar 

  32. Tsuda, S., Jones, J.: The emergence of synchronization behavior in Physarum polycephalum and its particle approximation. Biosystems 103, 331–341 (2010)

    Article  Google Scholar 

  33. Tsuda, S., Aono, M., Gunji, Y.P.: Robust and emergent Physarum logical-computing. Biosystems 73(1), 45–55 (2004)

    Article  Google Scholar 

  34. Vestad, T., Marr, D.W.M., Munakata, T.: Flow resistance for microfluidic logic operations. Appl. Phys. Lett. 84(25), 5074–5075 (2004)

    Article  Google Scholar 

  35. Whiting, J.G.H., de Lacy Costello, B.P.J., Adamatzky, A.: Sensory fusion in Physarum polycephalum and implementing multi-sensory functional computation. Biosystems 119, 45–52 (2014)

    Article  Google Scholar 

  36. Whiting, J.G.H., de Lacy Costello, B.P.J., Adamatzk, A.: Towards slime mould chemical sensor: mapping chemical inputs onto electrical potential dynamics of Physarum polycephalum. Sens. Actuators B Chem. 191, 844–853 (2014)

    Article  Google Scholar 

  37. Zhang, R., Dalton, C., Jullien, G.A.: Two-phase ac electrothermal fluidic pumping in a coplanar asymmetric electrode array. Microfluid. Nanofluid. 10(3), 521–529 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adamatzky, A., Jones, J., Mayne, R., Tsuda, S., Whiting, J. (2016). Logical Gates and Circuits Implemented in Slime Mould. In: Adamatzky, A. (eds) Advances in Physarum Machines. Emergence, Complexity and Computation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-26662-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26662-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26661-9

  • Online ISBN: 978-3-319-26662-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics