Skip to main content
Log in

Electrical properties of the plasma membrane of microplasmodia ofPhysarum polycephalum

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Microplasmodia ofPhysarum polycephalum have been investigated by conventional electrophysiological techniques. In standard medium (30mm K+, 4mm Ca++, 3mm Mg++, 18mm citrate buffer, pH 4.7, 22°C), the transmembrane potential differenceV m is around −100 mV and the membrane resistance about 0.25 Ω m2.V m is insensitive to light and changes of the Na+/K+ ratio in the medium. Without bivalent cations in the medium and/or in presence of metabolic inhibitors (CCCP, CN, N 3 ),V m drops to about 0 mV. Under normal conditions,V m is very sensitive to external pH (pH o ), displaying an almost Nernstian slope at pH o =3. However, when measured during metabolic inhibition,V m shows no sensitivity to pH o over the range 3 to 6, only rising (about 50 mV/pH) at pH o =6. Addition of glucose or sucrose (but not mannitol or sorbitol) causes rapid depolarization, which partially recovers over the next few minutes. Half-maximal peak depolarization (25 mV with glucose) was achieved with 1mm of the sugar. Sugar-induced depolarization was insensitive to pH o . The results are discussed on the basis of Class-I models of charge transport across biomembranes (Hansen, Gradmann, Sanders and Slayman, 1981,J. Membrane Biol. 63:165–190). Three transport systems are characterized: 1) An electrogenic H+ extrusion pump with a stoichiometry of 2 H+ per metabolic energy equivalent. The deprotonated form of the pump seems to be negatively charged. 2) In addition to the passive K+ pathways, there is a passive H+ transport system; here the protonated form seems to be positively charged. 3) A tentative H+-sugar cotransport system operates far from thermodynamic equilibrium, carrying negative charge in its deprotonated states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achenbach, F., Weisenseel, M.H. 1981. Ionic currents traverse the slime moldPhysarum.Cell Biol. Intern. Rep. 5:375–379

    Google Scholar 

  2. Alexopoulos, J. 1966. Morphogenesis in Myxomycetes.In: The Fungi — An Advanced Treatise. G.C. Ainsworth, editor. Vol. II, pp. 211–234. Academic Press, New York

    Google Scholar 

  3. Bisson, M.A., Walker, N.A. 1980. TheChara plasmalemma at high pH. Electrical measurements show rapid specific passive uniport of H+ or OH.J. Membrane Biol. 56:1–7

    Google Scholar 

  4. Daniel, J.M., Baldwin, H. 1964. Methods of culture for plasmodial myxomycetes.In: Methods in Cell Physiology. D.M. Prescott, editor. pp. 9–41. Academic Press, New York

    Google Scholar 

  5. Felle, H., Bentrup, F.W. 1977. A study of the primary effect of the uncoupler carbonyl cyanidem-chlorophenylhydrazone on membrane potential and conductance inRiccia fluitans.Biochim. Biophys. Acta 464:179–187

    Google Scholar 

  6. Felle, H., Bentrup, F.W. 1980. Hexose transport and membrane depolarization inRiccia fluitans.Planta 147:471–476

    Google Scholar 

  7. Gawlitta, W., Hoffmann, H.U., Stockem, W. 1979. Morphology and dynamic activity of the cell surface in different types of microplasmodia of the acellular slime moldPhysarum polycephalum. In: Publications of the University of Innsbruck. W. Sachsenmaier, editor. Vol. 120

  8. Gerson, D.F. 1977. Intracellular pH and the mitotic cycle inPhysarum and mammalian cells.In: Cell Cycle Regulation. J. Jetter, I.L. Cameron, G.M. Padilla and A.M. Zimmermann, editors. pp. 105–129. Academic Press, New York

    Google Scholar 

  9. Goodman, E.M. 1980.Physarum polycephalum: A review of a model system using structure-function approach.Int. Rev. Cytol. 63:1–58

    Google Scholar 

  10. Gradmann, D. 1970. Einfluss von Licht, Temperatur und Aussenmedium auf das elektrische Verhalten vonAcetabularia.Planta 93:323–353

    Google Scholar 

  11. Gradmann, D., Hansen, U.-P., Long, W.S., Slayman C.L., Warncke, J. 1978. Current-voltage relationships for the plasma membrane and its principal electrogenic pump inNeurospora crassa: I. Steady state conditions.J. Membrane Biol. 39:333–367

    Google Scholar 

  12. Gradmann, D., Hansen, U.-P., Slayman, C.L. 1981. Reaction kinetic analysis of current-voltage relationships for electrogenic pumps inNeurospora andAcetabularia.In: Electrogenic Ion Pumps. C.L. Slayman, editor. Current Topics in Membranes and Transport. pp. 257–276. Academic Press, New York

    Google Scholar 

  13. Hansen, U.P., Gradmann, D., Sanders, D., Slayman, C.L. 1981. Interpretation of current-voltage relationships for “active” ion transport systems. I. Steady state reaction-kinetic analysis of Class-I mechanisms.J. Membrane Biol. 63:165–190

    Google Scholar 

  14. Hansen, U.-P., Gradmann, D., Tittor, J., Sanders, D., Slayman, C.L. 1982. Kinetic analysis of active transport: reduction models.In: Higher Plant Membranes. D. Marmé, V.E. Marrés, and R. Hertel, editors. Elsevier, Amsterdam

    Google Scholar 

  15. Harold, F.M. 1977. Ion currents and physiological functions in microorganisms.Annu. Rev. Microbiol. 33:181–203

    Google Scholar 

  16. Hato, M., Ueda, T., Kurihara, K., Kobatake, Y. 1976. Change in zeta potential and membrane potential of slime moldPhysarum polycephalum in response to chemical stimuli.Biochim. Biophys. Acta 426:73–80

    Google Scholar 

  17. Kamiya, N., Abe, S. 1950. Bioelectric phenomena in the myxomycete plasmodium and their relation to protoplasmic flow.J. Colloid Sci. 5:149–163

    Google Scholar 

  18. Kleinig, H. 1972. Ein Schleimpilz als Objekt der Zellbiologie:Physarum polycephalum.Bio. i.u. Zeit 2:60–78

    Google Scholar 

  19. Komor, E., Tanner, W. 1974. The hexose-proton cotransport system ofChlorella. pH dependent change inK m values and translocation constants of the uptake system.J. Gen. Physiol. 64:568–581

    Google Scholar 

  20. Kuroda, H., Kuroda, R. 1981. Origin of the membrane potential in plasmodial droplets ofPhysarum polycephalum: Evidence for an electrogenic pump.J. Gen. Physiol. 78:637–655

    Google Scholar 

  21. McCormick, J.J., Blomquist, J.C., Rusch, H.P. 1970. Isolation and characterization of an extracellular polysaccharide fromPhysarum polycephalum.J. Bacteriol. 104:1110–1118

    Google Scholar 

  22. Meyer, R., Stockem, W. 1979. Studies on microplasmodia ofPhysarum polycephalum V: Electrical activity of different types of micro- and macroplasmodia.Cell Biol. Int. Rep. 3:321–330

    Google Scholar 

  23. Miller, D.M., Anderson, J.D., Abbot, B.C. 1968. Potentials and ionic exchange in slime mold plasmodia.Comp. Biochem. Physiol. 27:633–646

    Google Scholar 

  24. Rhea, R.P. 1966. Microcinematographic, electron microscopic and electrophysiological studies on shuttle streaming in the slime moldPhysarum polycephalum.In: Dynamics of Fluids and Plasmas. S.I. Pai, A.J. Faller, T.L. Lincoln, D.A. Trytten and T.D. Wilkerson, editors. pp. 149–164. Academic Press, New York

    Google Scholar 

  25. Ridgway, E.B., Durham, A.C.H. 1976. Oscillations of Calcium ion concentrations inPhysarum polycephalum.J. Cell Biol. 69:223–226

    Google Scholar 

  26. Sanders, D., Hansen, U.-P. 1981. Mechanism of Cl transport at the plasma membrane ofChara corallina. II. Transinhibition and the determination of H+/Cl binding order from a reaction kinetic model.J. Membrane Biol. 58:139–153

    Google Scholar 

  27. Sauer, H.W. 1978. Differentiation inPhysarum polycephalum.In: Cell Cycle Regulation. J.R. Jetter, I.L. Cameron, G.M. Padilla and A.M. Zimmermann, editors. pp. 149–164. Academic Press, New York

    Google Scholar 

  28. Schreckenbach, T., Walckhoff, B., Verfuerth, C. 1981. Blue-light receptor in a white mutant ofPhysarum polycephalum mediates inhibition of spherulation and regulation of glucose metabolism.Proc. Natl. Acad. Sci. USA 78:1009–1013

    Google Scholar 

  29. Slayman, C.L. 1974. Proton pumping and generalized energetics of transport.In: Membrane Transport in Plants. U. Zimmermann and J. Dainty, editors. pp. 107–119. Springer-Verlag, Berlin

    Google Scholar 

  30. Slayman, C.L., Long, W.S., Lu, C.Y.H. 1973. The relationship between ATP and an electrogenic pump in the plasma membrane ofNeurospora crassa.J. Membrane Biol. 14:305–343

    Google Scholar 

  31. Slayman, C.L., Slayman, C.W. 1974. Depolarization of the plasma membrane ofNeurospora during active transport of glucose: Evidence for a proton-dependent cotransport system.Proc. Natl. Acad. Sci. USA 71:1935–1939

    Google Scholar 

  32. Slayman, C.L., Slayman, C.W., Hansen, U.-P. 1977. Current-voltage relationship for the glucose/H+ cotransport system inNeurospora.In: Transmembrane Ionic Exchanges in Plants. M. Thellier, A. Monnier, M. Demarty and J. Dainty, editors. pp. 115–122, CNRS, Paris

    Google Scholar 

  33. Smith, J.E., Berry, D.R. 1974. A plasmodial slime mold:Physarum polycephalum.In: An Introduction to Biochemistry of Fungal Development. pp. 63–79. Academic Press, New York

    Google Scholar 

  34. Spanswick, R.M. 1972. Evidence for an electrogenic ion pump inNitella translucens. I. The effects of pH, K+, Na+, light and temperature on the membrane potential and resistance.Biochim. Biophys. Acta 288:73–89

    Google Scholar 

  35. Spanswick, R.M. 1981. Electrogenic ion pumps.Annu. Rev. Plant Physiol. 32:267–289

    Google Scholar 

  36. Taylor, R.E. 1953. The contractile process is not associated with potential changes.J. Cell. Comp. Physiol. 42:103–123

    Google Scholar 

  37. Wohlfahrt-Bottermann, K.E. 1974. Plasmalemma invaginations as characteristic constituents of plasmodia ofPhysarum polycephalum.J. Cell Sci. 16:23–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fingerle, J., Gradmann, D. Electrical properties of the plasma membrane of microplasmodia ofPhysarum polycephalum . J. Membrain Biol. 68, 67–77 (1982). https://doi.org/10.1007/BF01872255

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872255

Key words

Navigation