Skip to main content

The Role of δ-Opioid Receptors in Brain Ionic Homeostasis Under Physiological Condition

  • Chapter
  • First Online:
Neural Functions of the Delta-Opioid Receptor

Abstract

Homeostasis is one of the most fundamental concepts in understanding the physiological functions of bodies as well as the pathophysiology of diseases, and in a global view of system biology, is also a vital guiding principle for medicine. Because of the particular importance of ionic environment in neuronal functions, ion homeostasis is the most fundamental mechanism among all the brain homeostasis regulations, and most of the functional activities of the brain are highly dependent on the dynamic and relatively steady state of ionic environment. The concentrations of ions are in dynamic balance under physiological conditions, which depend on the complicated, but elaborate, regulatory mechanisms. The δ-opioid receptor (DOR) regulates a diverse array of physiological functions. DOR and its cognate endogenous opioids are widely expressed throughout the central nervous system and have an extensive interaction with ion channels, receptors, and transporters. DOR can regulate the release of many neurotransmitters, modify neuronal electrical activities and synaptic plasticity, and thereby tightly regulates ion homeostasis in neural activities. In this chapter, we will focus on the regulation of homeostasis of the key cations such as Na+, K+, Ca2+ in the brain under physiological conditions and the role of DOR in such homeostatic regulation. Almost all the previous studies regarding DOR-mediated regulation of ionic homeostasis under normoxic condition focused on intracellular Ca2+ activity. Few studies highlighted the regulation of K+ and Na+ homeostasis despite the functional coupling of DOR with K+ channels and Na+ channels. Overall, the predominant effect of DOR activation on Ca2+ entry is inhibitory. However, some studies show either mobilization of intracellular Ca2+ or stimulation of Ca2+ entry with opioid activation. In general, DOR signaling is inhibitory to Na+ influx and K+ efflux. In regard to this issue, we have recently made the first finding that DOR activation and expression reduces Na+ currents by targeting voltage-sensitive Na+ channels. The DOR effects have been demonstrated to occur through activation of different kind of G proteins, including Gi, Go, and even Gs classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[Ca2+]i:

Cytosolic free Ca2+ concentrations

[Ca2+]o:

Extracellular Ca2+ concentrations

[K+]e:

Extracellular K+ concentrations

[K+]i:

Intracellular K+ concentrations

[Na+]i:

Intracellular Na+ concentrations

[Na+]o:

Extracellular Na+ concentrations

ACSF:

Artificial cerebrospinal fluid

AMPARs:

AMPA receptors

BBB:

Blood-brain barrier

CCCP:

Carbonyl cyanide m-chlorophenyl hydrazone

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DA:

Dopamine

DAG:

Diacylglycerol

DAT:

Dopamine transporter

DOR:

δ-Opioid receptor

DRG:

Dorsal root ganglion

EAAT:

Excitatory amino acid transporter (glutamate transporter, also as GluT in Table 5.3)

eGFP:

Enhanced green fluorescent protein

EPSPs/EPSCs:

Excitatory postsynaptic potentials/currents

ER:

Endoplasmic reticulum

GAT:

GABA transporter

GIRK channels:

G-protein-activated inwardly rectifying K+ channels

GPCRs:

G protein-coupled receptors

i.c.v:

Intracerebroventricular

iGluRs:

Ionotropic glutamate receptors

IKir :

Inwardly rectifying K+ currents

IMM:

Inner mitochondrial membrane

IP3 :

Inositol triphosphate

IP3Rs:

IP3 receptors

IPSCs:

Inhibitory postsynaptic currents

ISEs:

Ion-selective electrodes

KOR:

κ-Opioid receptor

LTD:

Long-term depression

LTP:

Long-term potentiation

MAM:

Mitochondria-associated membrane

MAPK:

Mitogen-activated kinase

MCU:

Mitochondrial Ca2+ uniporter

mNCX:

Mitochondrial Na+/Ca2+ exchanger

MOR:

μ-Opioid receptor

nAChRs:

Nicotinic acetylcholine receptors

NCX:

Na+/Ca2+ exchanger

NKCC:

Na+-K+-2Cl cotransporter

NMDARs:

NMDA receptors

NMDG+ :

N-methyl-D-glucamine

NMR:

Nuclear magnetic resonance

OMM:

Outer mitochondrial membrane

PAG:

Midbrain periaqueductal gray

PBFI:

Potassium-binding benzofuran isophtalate

PIP2 :

Phosphatidylinositol 4,5-bisphosphate

PLC:

Phospholipase C

PMCA:

Plasma membrane Ca2+-ATPase

PTP:

Permeability transition pores

ROCs:

Receptor-operated channels

RYRs:

Ryanodine receptors

SBFI:

Sodium-binding benzofuran isophtalate

SERCA:

Sarco-endoplasmic reticular Ca2+ ATPase

SNAP:

Soluble N-ethylmaleimide sensitive factor Attachment Protein

SNARE:

SNAP REceptor

SOCs:

Store-operated Ca2+ entry channels

STIM:

Stromal interaction molecules

TEA:

Tetraethylammonium

TMA+ :

Tetramethylammonium

TRPCs:

Transient receptor potential channels

TTX:

Tetrodotoxin

VGCCs:

Voltage-gated Ca2+ channels

VGSCs:

Voltage-gated sodium channels

WT:

Wild type

ΔΨm:

Mitochondrial potential

References

  • Abeyta A, Dettmer TS, Barnes A, Vega D, Carta M, Gallegos N, Raymond-Stintz M, Savage DD, Valenzuela CF, Saland LC (2002) Delta opioid receptor localization in the rat cerebellum. Brain Res 931:100–105

    Article  PubMed  CAS  Google Scholar 

  • Acosta CG, López HS (1999) δ opioid receptor modulation of several voltage-dependent Ca2+ currents in rat sensory neurons. J Neurosci 19:8337–8348

    PubMed  CAS  Google Scholar 

  • Acquas E, Meloni M, Di Chiara G (1993) Blockade of δ-opioid receptors in the nucleus accumbens prevents ethanol-induced stimulation of dopamine release. Eur J Pharmacol 230:239–241

    Article  PubMed  CAS  Google Scholar 

  • Adámek S, Vyskočil F (2011) Potassium-selective microelectrode revealed difference in threshold potassium concentration for cortical spreading depression in female and male rat brain. Brain Res 1370:215–219

    Article  PubMed  CAS  Google Scholar 

  • Adams DJ, Trequattrini C (1998) Opioid receptor-mediated inhibition of omega-conotoxin GVIA-sensitive calcium channel currents in rat intracardiac neurons. J Neurophysiol 79:753–762

    PubMed  CAS  Google Scholar 

  • Adermark L, Lovinger DM (2008) Electrophysiological properties and gap junction coupling of striatal astrocytes. Neurochem Int 52:1365–1372

    Article  PubMed  CAS  Google Scholar 

  • Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59:932–946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahn AC, Tewari M, Poon CS, Phillips RS (2006) The limits of reductionism in medicine: could systems biology offer an alternative? PLoS Med 3, e208

    Article  PubMed  PubMed Central  Google Scholar 

  • Albert V, Subramanian A, Rangarajan K, Pandey RM (2011) Agreement of two different laboratory methods used to measure electrolytes. J Lab Phys 3:104–109

    CAS  Google Scholar 

  • Alger BE, Nicoll RA (1982a) Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro. J Physiol 328:105–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alger BE, Nicoll RA (1982b) Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J Physiol 328:125–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Hasani R, Bruchas MR (2011) Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 115:1363–1381

    PubMed  PubMed Central  CAS  Google Scholar 

  • Allouche S, Polastron J, Jauzac P (1996) The δ-opioid receptor regulates activity of ryanodine receptor in the human neuroblastoma cell line SK-N-BE. J Neurochem 67:2461–2470

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Leefmans FJ, Cruzblanca H, Gamino SM, Altamirano J, Nani A, Reuss L (1994) Transmembrane ion movements elicited by sodium pump inhibition in Helix aspersa neurons. J Neurophysiol 71:1787–1796

    PubMed  CAS  Google Scholar 

  • Ammann D, Bührer T, Schefer U, Müller M, Simon W (1987a) Intracellular neutral carrier-based Ca2+ microelectrode with subnanomolar detection limit. Pflugers Arch 409:223–228

    Article  PubMed  CAS  Google Scholar 

  • Ammann D, Chao PS, Simon W (1987b) Valinomycin-based K+ selective microelectrodes with low electrical membrane resistance. Neurosci Lett 74:221–226

    Article  PubMed  CAS  Google Scholar 

  • Amzica F, Massimini M, Manfridi A (2002) Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. J Neurosci 22:1042–1053

    PubMed  CAS  Google Scholar 

  • Antic SD, Zhou WL, Moore AR, Short SM, Ikonomu KD (2010) The decade of the dendritic NMDA spike. J Neurosci Res 88:2991–3001

    Article  PubMed  CAS  Google Scholar 

  • Arakaki X, Foster H, Su L, Do H, Wain AJ, Fonteh AN, Zgou F, Harrington MG (2011) Extracellular sodium modulates the excitability of cultured hippocampal pyramidal cells. Brain Res 1401:85–94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arenas E, Marsal J, Alberch J (1990) GABAA and GABAB antagonists prevent the opioid inhibition of endogenous acetylcholine release evoked by glutamate from rat neostriatal slices. Neurosci Lett 120:201–204

    Article  PubMed  CAS  Google Scholar 

  • Ariav G, Polsky A, Schiller J (2003) Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J Neurosci 23:7750–7758

    PubMed  CAS  Google Scholar 

  • Armstrong GA, Xiao C, Krill JL, Seroude L, Dawson-Scully K, Robertson RM (2011) Glial Hsp70 protects K+ homeostasis in the Drosophila brain during repetitive anoxic depolarization. PLoS One 6(12), e28994. doi:10.1371/journal.pone.0028994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atlas D (2013) The voltage-gated calcium channel functions as the molecular switch of synaptic transmission. Annu Rev Biochem 82:607–635

    Article  PubMed  CAS  Google Scholar 

  • Augustine GJ, Santamaria F, Tanaka K (2003) Local calcium signaling in neurons. Neuron 40:331–346

    Article  PubMed  CAS  Google Scholar 

  • Azarias G, Van de Ville D, Unser M, Chatton JY (2008) Spontaneous NA+ transients in individual mitochondria of intact astrocytes. Glia 56:342–353

    Article  PubMed  Google Scholar 

  • Baba-Aissa F, Raeymaekers L, Wuytack F, Dode L, Casteels R (1998) Distribution and isoform diversity of the organellar Ca2+ pumps in the brain. Mol Chem Neuropathol 33:199–208

    Article  PubMed  CAS  Google Scholar 

  • Bagley EE, Gerke MB, Vaughan CW, Hack SP, Christie MJ (2005) GABA transporter currents activated by protein kinase A excite midbrain neurons during opioid withdrawal. Neuron 45:433–445

    Article  PubMed  CAS  Google Scholar 

  • Ballanyi K, Grafe P, Reddy MM, ten Bruggencate G (1984) Different types of potassium transport linked to carbachol and gamma-aminobutyric acid actions in rat sympathetic neurons. Neuroscience 12:917–927

    Article  PubMed  CAS  Google Scholar 

  • Ballanyi K, Grafe P, ten Bruggencate G (1983) Intracellular free sodium and potassium, post-carbachol hyperpolarization, and extracellular potassium-undershoot in rat sympathetic neurones. Neurosci Lett 38:275–279

    Article  PubMed  CAS  Google Scholar 

  • Ballanyi K, Grafe P, Ten Bruggencate G (1987) Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices. J Physiol 382:159–174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ballanyi K, Kettenmann H (1990) Intracellular Na+ activity in cultured mouse oligodendrocytes. J Neurosci Res 26:455–460

    Article  PubMed  CAS  Google Scholar 

  • Bao L, Jin SX, Zhang C, Wang LH, Xu ZZ, Zhang FX, Wang LC, Ning FS, Cai HJ, Guan JS, Xiao HS, Xu ZQ, He C, Hökfelt T, Zhou Z, Zhang X (2003) Activation of delta opioid receptors induces receptor insertion and neuropeptide secretion. Neuron 37:121–133

    Article  PubMed  CAS  Google Scholar 

  • Bardoni R, Tawfik VL, Wang D, François A, Solorzano C, Shuster SA, Choudhury P, Betelli C, Cassidy C, Smith K, de Nooij JC, Mennicken F, O’Donnell D, Kieffer BL, Woodbury CJ, Basbaum AI, MacDermott AB, Scherrer G (2014) Delta opioid receptors presynaptically regulate cutaneous mechanosensory neuron input to the spinal cord dorsal horn. Neuron 81:1312–1327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barolet AW, Morris ME (1991) Changes in extracellular K+ evoked by GABA, THIP and baclofen in the guinea-pig hippocampal slices. Exp Brain Res 84:591–598

    Article  PubMed  CAS  Google Scholar 

  • Barsukova A, Komarov A, Hajnóczky G, Bernardi P, Bourdette D, Forte M (2011a) Activation of the mitochondrial permeability transition pore modulates Ca2+ responses to physiological stimuli in adult neurons. Eur J Neurosci 33:831–842

    Article  PubMed  PubMed Central  Google Scholar 

  • Barsukova AG, Bourdette D, Forte M (2011b) Mitochondrial calcium and its regulation in neurodegeneration induced by oxidative stress. Eur J Neurosci 34:437–447

    Article  PubMed  PubMed Central  Google Scholar 

  • Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baumhaker Y, Wollman Y, Goldstein MN, Sarne Y (1993) Evidence for mu-, delta-, and kappa-opioid receptors in a human neuroblastoma cell line. Life Sci 52:PL205–PL210

    Article  PubMed  CAS  Google Scholar 

  • Bausch SB, Patterson TA, Appleyard SM, Chavkin C (1995) Immunocytochemical localization of δ opioid receptors in mouse brain. J Chem Neuroanat 8:175–189

    Article  PubMed  CAS  Google Scholar 

  • Bay V, Butt AM (2012) Relationship between glial potassium regulation and axon excitability: a role for glial Kir4.1 channels. Glia 60:651–660

    Article  PubMed  Google Scholar 

  • Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8:451–465

    Article  PubMed  CAS  Google Scholar 

  • Bedner P, Steinhäuser C (2013) Altered Kir and gap junction channels in temporal lobe epilepsy. Neurochem Int 63:682–687

    Article  PubMed  CAS  Google Scholar 

  • Bennay M, Langer J, Meier SD, Kafitz KW, Rose CR (2008) Sodium signals in cerebellar Purkinje neurons and Bergmann glial cells evoked by glutamatergic synaptic transmission. Glia 56:1138–1149

    Article  PubMed  Google Scholar 

  • Bennett L, Ratka A (2003) Delta opioid receptors are involved in morphine-induced inhibition of luteinizing hormone releasing hormone in SK-N-SH cells. Neuropeptides 37:264–270

    Article  PubMed  CAS  Google Scholar 

  • Bernard C (1865) Introduction à l’étude de la médecine expérimentale. Paris. English edition: Bernard C (1927) An introduction to the study of experimental medicine (trans: Greene HC). Macmillan, New York

    Google Scholar 

  • Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127–1155

    PubMed  CAS  Google Scholar 

  • Bernardinelli Y, Azarias G, Chatton JY (2006) In situ fluorescence imaging of glutamate-evoked mitochondrial Na+ responses in astrocytes. Glia 54:460–470

    Article  PubMed  Google Scholar 

  • Bernardinelli Y, Magistretti PJ, Chatton JY (2004) Astrocytes generate Na+-mediated metabolic waves. Proc Natl Acad Sci U S A 101:14937–14942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernstein J (1902) Untersuchungen zur Thermodynamik der bioelektrischen Ströme. Pflugers Arch 92:521–562, English edition: Boylan JW (ed) (1971) Founders of experimental psychology. JF Lehmanns, München, pp 258–299

    Article  CAS  Google Scholar 

  • Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

    Article  PubMed  CAS  Google Scholar 

  • Betz C, Stracka D, Prescianotto-Baschong C, Frieden M, Demaurex N, Hall MN (2013) mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci U S A 110:12526–12534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhargava HN, Kumar S, Bian J-T (1997) Up-regulation of brain N-methyl-D-aspartate receptors following multiple intracerebroventricular injections of [D-Pen2, D-Pen5]encephalin and [D-Ala2, Glu4]deltorphin II in mice. Peptides 18:1609–1613

    Article  PubMed  CAS  Google Scholar 

  • Bhargava HN, Zhao G-M (1996) Effects of competitive and noncompetitive antagonists of the N-methyl-D-aspartate receptor on the analgesic action of δ1- and δ2-opioid receptor agonists in mice. Br J Pharmacol 119:1586–1590

    Article  CAS  Google Scholar 

  • Bhattacharjee A, Kaczmarek LK (2005) For K+ channels, Na+ in the new Ca2+. Trends Neurosci 28:422–428

    Article  PubMed  CAS  Google Scholar 

  • Bian JM, Wu N, Su RB, Li J (2012) Opioid receptor trafficking and signaling: what happens after opioid receptor activation? Cell Mol Neurobiol 32:167–184

    Article  PubMed  CAS  Google Scholar 

  • Bienvenu G, Seurin D, Le Bouc Y, Even P, Babajko S, Magnan C (2005) Dysregulation of energy homeostasis in mice overexpressing insulin-like growth factor-binding protein 6 in the brain. Diabetologia 48:1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Billet F, Costentin J, Dourmap N (2007) Influence of glial cells in the dopamine releasing effect resulting from the stimulation of striatal δ-opioid receptors. Neuroscience 150:131–143

    Article  PubMed  CAS  Google Scholar 

  • Blaesse P, Airaksinen MS, Rivera C, Kaila K (2009) Cation-chloride cotransporters and neuronal function. Neuron 61:820–838

    Article  PubMed  CAS  Google Scholar 

  • Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854

    PubMed  CAS  Google Scholar 

  • Bloodgood BL, Giessel AJ, Sabatini BL (2009) Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines. PLoS Biol 7(9), e1000190. doi:10.1371/journal.pbio.1000190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bloodgood BL, Sabatini BL (2005) Neuronal activity regulates diffusion across the neck of dendritic spines. Science 310:866–869

    Article  PubMed  CAS  Google Scholar 

  • Bloodgood BL, Sabatini BL (2007a) Ca2+ signaling in dendritic spines. Curr Opin Neurobiol 17:345–351

    Article  PubMed  CAS  Google Scholar 

  • Bloodgood BL, Sabatini BL (2007b) Nonlinear regulation of unitary synaptic signals by Cav2.3 voltage-sensitive calcium channels located in dendritic spines. Neuron 53:249–260

    Article  PubMed  CAS  Google Scholar 

  • Boada FE, LaVerde G, Jungreis C, Nemoto E, Tanase C, Hancu I (2005) Loss of cell ion homeostasis and cell viability in the brain: what sodium MRI can tell us. Curr Top Dev Biol 70:77–101

    Article  PubMed  CAS  Google Scholar 

  • Boitier E, Rea R, Duchen MR (1999) Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. J Cell Biol 145:795–808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bollimuntha S, Selvaraj S, Singh BB (2011) Emerging roles of canonical TRP channels in neuronal function. Adv Exp Med Biol 704:573–593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bootman MD, Rietdorf K, Collins T, Walker S, Sanderson M (2013) Ca2+-sensitive fluorescent dyes and intracellular Ca2+ imaging. Cold Spring Harb Protoc 2013:83–99. doi:10.1101/pdb.top066050

    PubMed  Google Scholar 

  • Borden LA (1996) GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 29:335–356

    Article  PubMed  CAS  Google Scholar 

  • Bosse KE, Jutkiewicz EM, Gnegy ME, Traynor JR (2008) The selective delta opioid agonist SNC80 enhances amphetamine-mediated efflux of dopamine from rat striatum. Neuropharmacology 55:755–762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouchard R, Pattarini R, Geiger JD (2003) Presence and functional significance of presynaptic ryanodine receptors. Prog Neurobiol 69:391–418

    Article  PubMed  CAS  Google Scholar 

  • Bourne J, Harris KM (2007) Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 17:381–386

    Article  PubMed  CAS  Google Scholar 

  • Boutin H, Dauphin F, MacKenzie ET, Jauzac P (1999) Differential time-course decreases in nonselective, μ-, δ-, κ-opioid receptors after focal cerebral ischemia in mice. Stroke 30:1271–1277

    Article  PubMed  CAS  Google Scholar 

  • Brini M, Calì T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71:2787–2814

    Article  PubMed  CAS  Google Scholar 

  • Britt JP, McGehee DS (2008) Presynaptic opioid and nicotinic receptor modulation of dopamine overflow in the nucleus accumbens. J Neurosci 28:1672–1681

    Article  PubMed  CAS  Google Scholar 

  • Brocard F, Shevtsova NA, Bouhadfane M, Tazerart S, Heinemann U, Rybak IA, Vinay L (2013) Activity-dependent changes in extracellular Ca2+ and K+ reveal pacemakers in the spinal locomotor-related network. Neuron 77:1047–1054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown DA, Scholfield CN (1974) Changes of intracellular sodium and potassium ion concentrations in isolated rat superior cervical ganglia induced by depolarizing agents. J Physiol 242:307–319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown HM, Pemberton JP, Owen JD (1976) A calcium-sensitive microelectrode suitable for intracellular measurement of calcium(II) activity. Anal Chim Acta 85:261–276

    Article  CAS  Google Scholar 

  • Bruggencate GT, Nicholson C, Stöckle H (1976) Climbing fiber evoked potassium release in cat cerebellum. Pflugers Arch 367:107–109

    Article  PubMed  CAS  Google Scholar 

  • Brustovetsky N, Brustovetsky T, Jemmerson R, Dubinsky JM (2002) Calcium-induced cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. J Neurochem 80:207–218

    Article  PubMed  CAS  Google Scholar 

  • Bühlmann P, Chen LD (2012) Ion-selective electrodes with ionophore-doped sensing membranes. In: Gale PA, Steed JW (eds) Supramolecular chemistry: from molecules to nanomaterials. Wiley, New York, pp 2539–2579

    Google Scholar 

  • Bührle CP, Sonnhof U (1983) Intracellular ion activities and equilibrium potentials in motoneurones and glia cells of the frog spinal cord. Pflugers Arch 396:144–153

    Article  PubMed  Google Scholar 

  • Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signaling. Nat Rev Neurosci 8:182–193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burnstock G (2000) P2X receptors in sensory neurones. Br J Anaesth 84:476–488

    Article  PubMed  CAS  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    PubMed  CAS  Google Scholar 

  • Butt AM, Kalsi A (2006) Inwardly retifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J Cell Mol Med 10:33–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cahalan MD (2009) STIMulating store-operated Ca2+ entry. Nat Cell Biol 11:669–677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cahill CM, White TD, Sawynok J (1996) Synergy between μ/δ-opioid receptors mediates adenosine release from spinal cord synaptosomes. Eur J Pharmacol 298:45–49

    Article  PubMed  CAS  Google Scholar 

  • Cai Y-C, Ma L, Fan G-H, Zhao J, Jiang L-Z, Pei G (1997) Activation of N-methyl-D-aspartate receptor attenuates acute responsiveness of δ-opioid receptors. Mol Pharmacol 51:583–587

    PubMed  CAS  Google Scholar 

  • Callaway JC, Ross WN (1997) Spatial distribution of synaptically activated sodium concentration changes in cerebellar Purkinje neurons. J Neurophysiol 77:145–152

    PubMed  CAS  Google Scholar 

  • Cameron R, Klein L, Shyjan AW, Rakic P, Levenson R (1994) Neurons and astroglia express distinct subsets of Na, K-ATPase alpha and beta subunits. Brain Res Mol Brain Res 21:333–343

    Article  PubMed  CAS  Google Scholar 

  • Camps M, Carozzi A, Schnabel P, Scheer A, Parker PJ, Gierschik P (1992) Isozyme-selective stimulation of phospholipase C-beta 2 by G protein beta gamma-subunits. Nature 360:684–686

    Article  PubMed  CAS  Google Scholar 

  • Cannon WB (1929) Organization for physiological homeostasis. Physiol Rev 9:399–431

    Google Scholar 

  • Cannon WB (1932) The wisdom of the body. W. W, Norton, New York

    Google Scholar 

  • Cao Y-J, Bian J-T, Bhargava HN (1997) Effects of NMDA receptor antagonists on δ1- and δ2-opioid receptor agonists-induced changes in the mouse brain [3H]DPDPE binding. Eur J Pharmacol 335:161–166

    Article  PubMed  CAS  Google Scholar 

  • Caraway WT (1981) Major developments in clinical chemical instrumentation. J Clin Chem Clin Biochem 19:491–496

    PubMed  CAS  Google Scholar 

  • Carr JA, Lovering AT (2000) Mu and delta opioid receptor regulation of pro-opiomelanocortin peptide secretion from the rat neurointermediate pituitary in vitro. Neuropeptides 34:69–75

    Article  PubMed  CAS  Google Scholar 

  • Castro DC, Berridge KC (2014) Opioid hedonic hotspot in nucleus accumbens shell: mu, delta, and kappa maps for enhancement of sweetness “liking” and “wanting”. J Neurosci 34:4239–4250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:a003947. doi:10.1101/cshperspect.a003947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59:882–901

    Article  PubMed  CAS  Google Scholar 

  • Chalmers S, Nicholls DG (2003) The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem 278:19062–19070

    Article  PubMed  CAS  Google Scholar 

  • Chameau P, van Hooft JA (2006) Serotonin 5-HT3 receptors in the central nervous system. Cell Tissue Res 326:573–581

    Article  PubMed  CAS  Google Scholar 

  • Chandrakumar NS, Stapelfeld A, Beardsley PM, Lopez OT, Drury B, Anthony E, Savage MA, Williamson LN, Reichman M (1992) Analogs of the delta opioid receptor selective cyclic peptide [2-D-penicillamine,5-D-penicillamine]-enkephalin: 2′,6′-dimethyltyrosine and Gly3-Phe4 amide bond isostere substitutions. J Med Chem 35:2928–2938

    Article  PubMed  CAS  Google Scholar 

  • Chang KJ, Cuatrecasas P (1979) Multiple opiate receptors: enkephalins and morphine bind to receptors of different specificity. J Biol Chem 254:2610–2618

    PubMed  CAS  Google Scholar 

  • Chang KT, Niescier RF, Min KT (2011) Mitochondrial matrix Ca2+ as an intrinsic signal regulating mitochondrial motility in axons. Proc Natl Acad Sci U S A 108:15456–15461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chao D, Balboni G, Lazerus LH, Salvadori S, Xia Y (2009) Na+ mechanism of DOR protection against anoxic K+ derangement in the cortex. Cell Mol Life Sci 66:1105–1115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chao D, Bazzy-Asaad A, Balboni G, Salvadori S, Xia Y (2008) Activation of DOR attenuates anoxic K+ derangement via inhibition of Na+ entry in mouse cortex. Cereb Cortex 18:2217–2227

    Article  PubMed  PubMed Central  Google Scholar 

  • Chao D, Bazzy-Asaad A, Balboni G, Xia Y (2007a) δ-, but not μ-, opioid receptor stabilizes K+ homeostasis by reducing Ca2+ influx in the cortex during acute hypoxia. J Cell Physiol 212:60–67

    Article  PubMed  CAS  Google Scholar 

  • Chao D, Donnelly D, Feng Y, Asaad-Bazzy A, Xia Y (2007b) Cortical δ-opioid receptors potentiate K+ homeostasis during anoxia and oxygen-glucose deprivation. J Cereb Blood Flow Metab 27:356–368

    Article  PubMed  CAS  Google Scholar 

  • Chao D, He X, Yang Y, Balboni G, Salvadori S, Kim DH, Xia Y (2012a) Hydrogen sulfide induced disruption of Na+ homeostasis in the cortex. Toxicol Sci 128:198–208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chao D, He X, Yang Y, Bazzy-Asaad A, Lazarus LH, Balboni G, Kim DH, Xia Y (2012b) DOR activation inhibits anoxic/ischemic Na+ influx through Na+ channels via PKC mechanisms in the cortex. Exp Neurol 236:228–239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chao D, Shen X, Xia Y (2013) From acupuncture to interaction between δ-opioid receptors and Na+ channels: a potential pathway to inhibit epileptic hyperexcitability. Evid Based Complement Alternat Med 2013:216016. doi:10.1155/2013/216016

    PubMed  PubMed Central  Google Scholar 

  • Chao D, Xia Y (2010) Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol 90:439–470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chao D, Xia Y (2012) Acupuncture treatment of epilepsy. In: Xia Y, Ding G, Wu G (eds) Current research in acupuncture. Springer, New York, pp 129–214. doi:10.1007/978-1-4614-3357-6_6

    Google Scholar 

  • Chatton JY, Marquet P, Magistretti PJ (2000) A quantitative analysis of L-glutamate-regulated Na+ dynamics in mouse cortical astrocytes: implications for cellular bioenergetics. Eur J Neurosci 12:3843–3853

    Article  PubMed  CAS  Google Scholar 

  • Chatton JY, Pellerin L, Magistretti PJ (2003) GABA uptake into astrocytes is not associated with significant metabolic cost: implications for brain imaging of inhibitory transmission. Proc Natl Acad Sci U S A 100:12456–12461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chatton JY, Shimamoto K, Magistretti PJ (2001) Effects of glial glutamate transporter inhibitors on intracellular Na+ in mouse astrocytes. Brain Res 893:46–52

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay M, Mata M, Fink DJ (2008) Continuous δ-opioid receptor activation reduces neuronal voltage-gated sodium channel (Nav1.7) levels through activation of protein kinase C in painful diabetic neuropathy. J Neurosci 28:6625–6658

    Article  CAS  Google Scholar 

  • Chen L, Zou S, Lou X, Kang H-G (2000) Different stimulatory opioid effects on intracellular Ca2+ in SH-SY5Y cells. Brain Res 882:256–265

    Article  PubMed  CAS  Google Scholar 

  • Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen WH, Chu KC, Wu SJ, Wu JC, Shui HA, Wu ML (1999) Early metabolic inhibit-induced intracellular sodium and calcium increase in rat cerebellar granule cells. J Physiol 515:133–146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Mestek A, Liu J, Hurley JA, Yu L (1993) Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol Pharmacol 44:8–12

    PubMed  CAS  Google Scholar 

  • Cheng KT, Ong HL, Liu X, Ambudkar IS (2013) Contribution and regulation of TRPC channels in store-operated Ca2+ entry. Curr Top Membr 71:149–179

    Article  PubMed  CAS  Google Scholar 

  • Chever O, Djukic B, McCarthy KD, Amzica F (2010) Implication of Kir 4.1 channel in excess potassium clearance: an in vivo study on anesthetized glial-conditional Kir 4.1 knock-out mice. J Neurosci 30:15769–15777

    Article  PubMed  CAS  Google Scholar 

  • Chieng B, Christie MJ (2009) Chronic morphine treatment induces functional delta-opioid receptors in amygdala neurons that project to periaqueductal gray. Neuropharmacology 57:430–437

    Article  PubMed  CAS  Google Scholar 

  • Chouhan AK, Ivannikov MV, Lu Z, Sugimori M, Llinas RR, Macleod GT (2012) Cytosolic calcium coordinates mitochondrial energy metabolism with presynaptic activity. J Neurosci 32:1233–1243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chu Sin Chung P, Kieffer BL (2013) Delta opioid receptors in brain function and diseases. Pharmacol Ther 140:112–120

    Article  PubMed  CAS  Google Scholar 

  • Civelli O, Douglass J, Goldstein A, Herbert E (1985) Sequence and expression of the rat prodynorphin gene. Proc Natl Acad Sci U S A 82:4291–4295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clapham DE, Neer EJ (1997) G protein beta gamma subunits. Annu Rev Pharmacol Toxicol 37:167–203

    Article  PubMed  CAS  Google Scholar 

  • Cohen GA, Doze VA, Madison DV (1992) Opioid inhibition of GABA release from presynaptic terminals of rat hippocampal interneurons. Neuron 9:325–335

    Article  PubMed  CAS  Google Scholar 

  • Cohen JE, Fields RD (2004) Extracellular calcium depletion in synaptic transmission. Neuroscientist 10:12–17

    Article  PubMed  CAS  Google Scholar 

  • Coles JA, Orkand RK (1985) Changes in sodium activity during light stimulation in photoreceptors, glia and extracellular space in drone retina. J Physiol 362:415–435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Connor M, Henderson G (1996) δ- and μ-opioid receptor mobilization of intracellular calcium in SH-SY5Y human neuroblastoma cells. Br J Pharmacol 117:333–340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Connor MA, Keir MJ, Henderson G (1997) δ-opioid receptor mobilization of intracellular calcium in SH-SY5Y cells: lack of evidence for δ-receptor subtypes. Neuropharmacology 36:125–133

    Article  PubMed  CAS  Google Scholar 

  • Conti F, Minelli A, Melone M (2004) GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. Brain Res Brain Res Rev 45:196–212

    Article  PubMed  CAS  Google Scholar 

  • Cordingley GE, Somjen GG (1978) The clearing of excess potassium from extracellular space in spinal cord and cerebral cortex. Brain Res 151:291–306

    Article  PubMed  CAS  Google Scholar 

  • Corlew R, Brasier DJ, Feldman DE, Philpot BD (2008) Presynaptic NMDA receptors: newly appreciated roles in cortical synaptic function and plasticity. Neuroscientist 14:609–625

    Article  PubMed  PubMed Central  Google Scholar 

  • Cousin MA, Nicholls DG, Pocock JM (1995) Modulation of ion gradients and glutamate release in cultured cerebellar granule cells by ouabain. J Neurochem 64:2097–2104

    Article  PubMed  CAS  Google Scholar 

  • Cox BM, Goldstein A, Hi CH (1976) Opioid activity of a peptide, betalipotropin-(61–91), derived from etalipotropin. Proc Natl Acad Sci U S A 73:1821–1823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui RJ, Roberts BL, Zhao H, Andresen MC, Appleyard SM (2012) Opioid inhibit visceral afferent activation of catecholamine neurons in the solitary tract nucleus. Neuroscience 222:181–190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Ambrosio R, Gordon DS, Winn HR (2002) Differential role of KIR channel and Na(+)/K(+)-pump in the regulation of extracellular K(+) in rat hippocampus. J Neurophysiol 87:87–102

    PubMed  Google Scholar 

  • D’Ambrosio R, Maris DO, Grady MS, Winn HR, Janigro D (1999) Impaired K+ homeostasis and altered electrophysiological properties of post-traumatic hippocampal glia. J Neurosci 19:8152–8162

    PubMed  PubMed Central  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  • Danielsson I, Gasior M, Stevenson GW, Folk JE, Rice KC, Negus SS (2006) Electroencephalographic and convulsant effects of the delta opioid agonist SNC80 in rhesus monkeys. Pharmacol Biochem Behav 85:428–434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • David G, Barrett JN, Barrett EF (1998) Evidence that mitochondria buffer physiological Ca2+ loads in lizard motor terminals. J Physiol 509:59–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • David G, Talbot J, Barrett EF (2003) Quantitative estimate of mitochondrial [Ca2+] in stimulated motor nerve terminals. Cell Calcium 33:197–206

    Article  PubMed  CAS  Google Scholar 

  • David Y, Cacheaux LP, Ivens S, Lapilover E, Heinemann U, Kaufer D, Friedman A (2009) Astrocytic dysfunction in epileptogenesis: consequence of altered potassium and glutamate homeostasis? J Neurosci 29:10588–10599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Stefani D, Raffaello A, Teardo E, Szabò I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deitmer JW, Rose CR (2010) Ion changes and signaling in perisynaptic glia. Brain Res Rev 63:113–129

    Article  PubMed  CAS  Google Scholar 

  • Deitmer JW, Schlue WR (1983) Intracellular Na+ and Ca2+ in leech Retzius neurones during inhibition of the Na+-K+ pump. Pflugers Arch 397:195–201

    Article  PubMed  CAS  Google Scholar 

  • Deng H, Yang Z, Li Y, Bao G, Friedrich T, Gu Q, Shen X, Schwarz W (2009) Interactions of Na+, K+-ATPase and co-expressed δ-opioid receptor. Neurosci Res 65:222–227

    Article  PubMed  CAS  Google Scholar 

  • Denk W, Yuste R, Svoboda K, Tank DW (1996) Imaging calcium dynamics in dendritic spines. Curr Opin Neurobiol 6:372–378

    Article  PubMed  CAS  Google Scholar 

  • Dietzel I, Heinemann U, Hofmeier G, Lux HD (1980) Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration. Exp Brain Res 40:432–439

    Article  PubMed  CAS  Google Scholar 

  • Dietzel I, Heinemann U, Hofmeier G, Lux HD (1982) Stimulus-induced changes in extracellular Na+ and Cl− concentration in relation to changes in the size of the extracellular space. Exp Brain Res 46:73–84

    Article  PubMed  CAS  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    PubMed  CAS  Google Scholar 

  • Dipolo R, Beaugé L (2006) Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions. Physiol Rev 86:155–203

    Article  PubMed  CAS  Google Scholar 

  • Djukic B, Casper KB, Philpot BD, Chin LS, McCarthy KD (2007) Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci 27:11354–11365

    Article  PubMed  CAS  Google Scholar 

  • Doczi J, Turiák L, Vajda S, Mándi M, Töröcsik B, Gerencser AA, Kiss G, Konràd C, Adam-Vizi V, Chinopoulos C (2011) Complex contribution of cyclophilin D to Ca2+-induced permeability transition in brain mitochondria, with relation to the bioenergetic state. J Biol Chem 286:6345–6353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doengi M, Hirnet D, Coulon P, Pape HC, Deitmer JW, Lohr C (2009) GABA uptake-dependent Ca(2+) signaling in developing olfactory bulb astrocytes. Proc Natl Acad Sci U S A 106:17570–17575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dörner R, Ballanyi K, Schlue WR (1990) Glutaminergic responses of neuropile glial cells and Retzius neurones in the leech central nervous system. Brain Res 523:111–116

    Article  PubMed  Google Scholar 

  • Dourmap N, Costentin J (1994) Involvement of glutamate receptors in the striatal encephalin-induced dopamine release. Eur J Pharmacol 253:R9–R11

    Article  PubMed  CAS  Google Scholar 

  • Dreosti E, Odermatt B, Dorostkar MM, Lagnado L (2009) A genetically encoded reporter of synaptic activity in vivo. Nat Methods 6:883–889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dronne MA, Grenier E, Dumont T, Hommel M, Boissel JP (2007) Role of astrocytes in grey matter during stroke: a modelling approach. Brain Res 1138:231–242

    Article  PubMed  CAS  Google Scholar 

  • Dunaevsky A, Mason CA (2003) Spine motility: a means towards an end? Trends Neurosci 26:155–160

    Article  PubMed  CAS  Google Scholar 

  • Edman A, Gestrelius S, Grampp W (1983) Intracellular ion control in lobster stretch receptor neurone. Acta Physiol Scand 118:241–252

    Article  PubMed  CAS  Google Scholar 

  • Eisenman G, Rudin DO, Casby JU (1957) Glass electrode for measuring sodium ion. Science 126:831–834

    Article  PubMed  CAS  Google Scholar 

  • Erbs E, Faget L, Scherrer G, Kessler P, Hentsch D, Vonesch JL, Matifas A, Kieffer BL, Massotte D (2012) Distribution of delta opioid receptor-expressing neurons in the mouse hippocampus. Neuroscience 221:203–213

    Article  PubMed  CAS  Google Scholar 

  • Erecińska M, Dagani F, Nelson D, Deas J, Silver IA (1991) Relations between intracellular ions and energy metabolism: a study with monensin in synaptosomes, neurons, and C6 glioma cells. J Neurosci 11:2410–2421

    PubMed  Google Scholar 

  • Evans CJ, Keith DE Jr, Morrison H, Magendzo K, Edwards RH (1992) Cloning of a delta opioid receptor by functional expression. Science 258:1952–1955

    Article  PubMed  CAS  Google Scholar 

  • Fan G-H, Zhao J, Wu Y-L, Lou L-G, Zhang Z, Jing Q, Ma L, Pei G (1998) N-methyl-D-aspartate attenuates opioid receptor-mediated G protein activation and this process involves protein kinase C. Mol Pharmacol 53:684–690

    PubMed  CAS  Google Scholar 

  • Fan S-F, Crain SM (1995) Dual regulation by μ, δ, and κ opioid receptor agonists of K+ conductance of DRG neurons and neuroblastoma x DRG neuron hybrid F11 cells. Brain Res 696:97–105

    Article  PubMed  CAS  Google Scholar 

  • Fan S-F, Shen K-F, Crain SM (1991) Opioids at low concentration decrease openings of K+ channels in sensory ganglion neurons. Brain Res 558:166–170

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y (2012) Current research on opioid receptor function. Curr Drug Targets 13:230–246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng Y, He X, Yang Y, Chen J, Yin K, Xia Y (2011) Effect of delta-opioid receptor over-expression on cortical expression of GABAA receptor α1-subunit in hypoxia. Chin J Physiol 54:118–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feuerstein TJ, Albrecht C, Wessler I, Zentner J, Jackisch R (1998) δ1-opioid receptor-mediated control of acetylcholine (Ach) release in human neocortex slices. Int J Dev Neurosci 16:795–802

    Article  PubMed  CAS  Google Scholar 

  • Fields A, Gafni M, Oron Y, Sarne Y (1995) Multiple effects of opiates on intracellular calcium level and on calcium uptake in three neuronal cell lines. Brain Res 687:94–102

    Article  PubMed  CAS  Google Scholar 

  • Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82:893–922

    Article  PubMed  CAS  Google Scholar 

  • Fink D, Knapp PE, Mata M (1996) Differential expression of Na, K-ATPase isoforms in oligodendrocytes and astrocytes. Dev Neurosci 18:319–326

    Article  PubMed  CAS  Google Scholar 

  • Fischbach PS, Barrett TD, Reed NJ, Lucchesi BR (2003) SNC-80-induced preconditioning: selective activation of the mitochondrial adenosine triphosphate-gated potassium channel. J Cardiovasc Pharmacol 41:744–750

    Article  PubMed  CAS  Google Scholar 

  • Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franceschetti S, Lavazza T, Curia G, Aracri P, Panzica F, Sancini G, Avanzini G, Magistretti J (2003) Na+-activated K+ current contributes to postexcitatory hyperpolarization in neocortical intrinsically bursting neurons. J Neurophysiol 89:2101–2111

    Article  PubMed  CAS  Google Scholar 

  • Friedman JE, Haddad GG (1994) Anoxia induces an increase in intracellular sodium in rat central neurons in vitro. Brain Res 663:329–334

    Article  PubMed  CAS  Google Scholar 

  • Friedman SM, Jamieson JD, Nakashima M, Friedman CL (1959) Sodium- and potassium-sensitive glass electrodes for biological use. Science 130:1252–1254

    Article  PubMed  CAS  Google Scholar 

  • Fu W, Ruangkittisakul A, MacTavish D, Baker GB, Ballanyi K, Jhamandas JH (2013) Activity and metabolism-related Ca2+ and mitochondrial dynamics in co-cultured human fetal cortical neurons and astrocytes. Neuroscience 250:520–535

    Article  PubMed  CAS  Google Scholar 

  • Fung ML, Croning MD, Haddad GG (1999) Sodium homeostasis in rat hippocampal slices during oxygen and glucose deprivation: role of voltage-sensitive sodium channels. Neurosci Lett 275:41–44

    Article  PubMed  CAS  Google Scholar 

  • Gallo V, Ghiani CA (2000) Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharmacol Sci 21:252–258

    Article  PubMed  CAS  Google Scholar 

  • Gazyakan E, Disko U, Haaf A, Heimrich B, Jackisch R (2000) Postnatal development of opioid receptors modulating acetylcholine release in hippocampus and septum of the rat. Brain Res Dev Brain Res 123:135–141

    Article  PubMed  CAS  Google Scholar 

  • Gemes G, Bangaru ML, Wu HE, Tang Q, Weihrauch D, Koopmeiners AS, Cruikshank JM, Kwok WM, Hogan QH (2011) Store-operated Ca2+ entry in sensory neurons: functional role and the effect of painful nerve injury. J Neurosci 31:3536–3549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Georges F, Normand E, Bloch B, Moine CL (1998) Opioid receptor gene expression in the rat brain during ontogeny, with special reference to the mesostriatal system: an in situ hybridization study. Dev Brain Res 109:187–199

    Article  CAS  Google Scholar 

  • Georgoussi Z, Georganta EM, Milligan G (2012) The other side of opioid receptor signalling: regulation by protein-protein interaction. Curr Drug Targets 13:80–102

    Article  PubMed  CAS  Google Scholar 

  • Giacomello M, De Mario A, Scarlatti C, Primerano S, Carafoli E (2013) Plasma membrane calcium ATPases and related disorders. Int J Biochem Cell Biol 45:753–762

    Article  PubMed  CAS  Google Scholar 

  • Gido G, Kristian T, Siesjo BK (1997) Extracellular potassium in a neocortical core area after transient focal ischemia. Stroke 28:206–210

    Article  PubMed  CAS  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    Article  PubMed  CAS  Google Scholar 

  • Glancy B, Balaban RS (2012) Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry 51:2959–2973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gobbi P, Castaldo P, Minelli A, Salucci S, Magi S, Corcione E, Amoroso S (2007) Mitochondrial localization of Na+/Ca2+ exchangers NCX1-3 in neurons and astrocytes of adult rat brain in situ. Pharmacol Res 56:556–565

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JH, Tamas G, Aronov D, Yuste R (2003) Calcium microdomains in aspiny dendrites. Neuron 40:807–821

    Article  PubMed  CAS  Google Scholar 

  • Golding NL, Spruston N (1998) Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyrimidal neurons. Neuron 21:1189–1200

    Article  PubMed  CAS  Google Scholar 

  • Goldstein A (1976) Opioid peptides endorphins in pituitary and brain. Science 193:1081–1086

    Article  PubMed  CAS  Google Scholar 

  • Goldstein A, Lowney LI, Pal BK (1971) Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc Natl Acad Sci U S A 68:1742–1747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gordon GRJ, Iremonger KJ, Kantevari S, Ellis-Davies GCR, MacVicar BA, Bains JS (2009) Astrocyte-mediated distributed plasticity at hypothalamic glutamate synapses. Neuron 64:391–403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gouriou Y, Bijlenga P, Demaurex N (2013) Mitochondrial Ca2+ uptake from plasma membrane Cav3.2 protein channels contributes to ischemic toxicity in PC12 cells. J Biol Chem 288:12459–12468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grafe P, Rimpel J, Reddy MM, ten Bruggencate G (1982) Changes of intracellular sodium and potassium ion concentrations in frog spinal motoneurons induced by repetitive synaptic stimulation. Neuroscience 7:3213–3220

    Article  PubMed  CAS  Google Scholar 

  • Graier WF, Frieden M, Malli R (2007) Mitochondria and Ca(2+) signaling: old guests, new functions. Pflugers Arch 455:375–396

    Article  PubMed  CAS  Google Scholar 

  • Grecksch G, Becker A, Schroeder H, Höllt V (1999) Involvement of delta-opioid receptors in pentylenetetrazol kindling development and kindling-related processes in rats. Naunyn Schmiedebergs Arch Pharmacol 360:151–156

    Article  PubMed  CAS  Google Scholar 

  • Gross CG (1998) Claude Bernard and the constancy of the internal environment. Neuroscientist 4:380–385

    Article  Google Scholar 

  • Grunditz Å, Holbro N, Tian L, Zuo Y, Oertner TG (2008) Spine neck plasticity controls postsynaptic calcium signals through electrical compartmentalization. J Neurosci 28:13457–13466

    Article  PubMed  CAS  Google Scholar 

  • Guatteo E, Mercuri NB, Bernardi G, Knöpfel T (1998) Intracellular sodium and calcium homeostasis during hypoxia in dopamine neurons of rat substantia nigra parscompacta. J Neurophysiol 80:2237–2243

    PubMed  CAS  Google Scholar 

  • Gulya K, Kovács GL, Kása P (1991a) Regulation of endogenous calcium and magnesium levels by delta opioid receptors in the rat brain. Brain Res 547:22–27

    PubMed  CAS  Google Scholar 

  • Gulya K, Kovács GL, Kása P (1991b) Partial depletion of endogenous zinc level by (D-Pen2, D-Pen5)enkephalin in the rat brain. Life Sci 48:PL57–PL62

    Article  PubMed  CAS  Google Scholar 

  • Gulya K, Szikra J, Kása P (1995) [D-Pen2, D-Pen5]enkephalin, a delta opioid agonist reduces endogenous aluminum content in the rat central nervous system. Neuroscience 66:499–506

    Article  PubMed  CAS  Google Scholar 

  • Haak LL, Grimaldi M, Smaili SS, Russell JT (2002) Mitochondria regulate Ca2+ wave initiation and inositol trisphosphate signal transduction in oligodendrocyte progenitors. J Neurochem 80:405–415

    Article  PubMed  CAS  Google Scholar 

  • Haas M, Forbush B III (1998) The Na-K-Cl cotransporters. J Bioenerg Biomembr 30:161–172

    Article  PubMed  CAS  Google Scholar 

  • Hack SP, Bagley EE, Chieng BCH, Christie M (2005) Induction of δ-opioid receptor function in the midbrain after chronic morphine treatment. J Neurosci 25:3192–3198

    Article  PubMed  CAS  Google Scholar 

  • Haj-Yasein NN, Jensen V, Vindedal GF, Gundersen GA, Klungland A, Ottersen OP, Hvalby O, Nagelhus EA (2011) Evidence that compromised K+ spatial buffering contributes to the epileptogenic effect of mutations in the human Kir4.1 gene (KCNJ10). Glia 59:1635–1642

    Article  PubMed  Google Scholar 

  • Hald PM (1947) The flame photometer for the measurement of sodium and potassium in biological materials. J Biol Chem 167:499–510

    PubMed  CAS  Google Scholar 

  • Hamilton G, Mathur R, Allsop JM, Forton DM, Dhanjal NS, Shaw RJ, Taylor-Robinson SD (2003) Changes in brain intracellular pH and membrane phospholipids on oxygen therapy in hypoxic patients with chronic obstructive pulmonary disease. Metab Brain Dis 18:95–109

    Article  PubMed  CAS  Google Scholar 

  • Han JS (2003) Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies. Trends Neurosci 26:17–22

    Article  PubMed  CAS  Google Scholar 

  • Hanoune J, Defer N (2001) Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 41:145–174

    Article  PubMed  CAS  Google Scholar 

  • Hansen AJ (1978) The extracellular potassium concentration in brain cortex following ischemia in hypo- and hyperglycemic rats. Acta Physiol Scand 102:324–329

    Article  PubMed  CAS  Google Scholar 

  • Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65:101–148

    PubMed  CAS  Google Scholar 

  • Hara M, Inous M, Yasukura T, Ohnishi S, Mikami Y, Inogaki C (1992) Uneven distribution of inctracellular Cl− in rat hippocampal neurons. Neurosci Lett 143:135–138

    Article  PubMed  CAS  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371

    Article  PubMed  CAS  Google Scholar 

  • Harrison C, Rowbotham DJ, Devi LA, Lambert DG (1999) The effect of C-terminal truncation of the recombinant δ-opioid receptor on Cai2+ signaling. Eur J Pharmacol 379:237–242

    Article  PubMed  CAS  Google Scholar 

  • Hauser KF, Harris-White ME, Jackson JA, Opanashuk LA, Carney JM (1998) Opioids disrupt Ca2+ homeostasis and induce carbonyl oxyradical production in mouse astrocytes in vitro: transient increases and adaptation to sustained exposure. Exp Neurol 151:70–76

    Article  PubMed  CAS  Google Scholar 

  • Häusser M, Roth A (1997) Dendritic and somatic glutamate receptor channels in rat cerebellar Purkinje cells. J Physiol 501:77–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashi Y, Majewska AK (2005) Dendritic spine geometry: functional implication and regulation. Neuron 46:529–532

    Article  PubMed  CAS  Google Scholar 

  • He X, Sandhu HK, Yang Y, Hua F, Belser N, Kim DH, Xia Y (2013) Neuroprotection against hypoxia/ischemia: δ-opioid receptor-mediated cellular/molecular events. Cell Mol Life Sci 70:2291–2303

    Article  PubMed  CAS  Google Scholar 

  • Heinemann U, Lux HD (1975) Undershoots following stimulus-induced rises of extracellular potassium concentration in cerebral cortex of cat. Brain Res 93:63–76

    Article  PubMed  CAS  Google Scholar 

  • Heinemann U, Lux HD (1977) Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Res 120:231–249

    Article  PubMed  CAS  Google Scholar 

  • Heinemann U, Lux HD, Gutnick MJ (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp Brain Res 27:237–243

    PubMed  CAS  Google Scholar 

  • Helmchen F, Denk W (2002) New developments in multiphoton microscopy. Curr Opin Neurobiol 12:593–601

    Article  PubMed  CAS  Google Scholar 

  • Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    Article  PubMed  CAS  Google Scholar 

  • Helmchen F, Denk W, Kerr JN (2013) Miniaturization of two-photon microscopy for imaging in freely moving animals. Cold Spring Harb Protoc 2013:904–913

    Article  PubMed  Google Scholar 

  • Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA (1996) Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature 380:258–262

    Article  PubMed  CAS  Google Scholar 

  • Hertle DN, Yeckel MF (2007) Distribution of inositol-1,4,5-trisphosphate receptor isotypes and ryanodine receptor isotypes during maturation of the rat hippocampus. Neuroscience 150:625–638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hertz L, Xu J, Song D, Yan E, Gu L, Peng L (2013) Astrocytic and neuronal accumulation of elevated extracellular K(+) with a 2/3 K(+)/Na(+) flux ratio-consequences for energy metabolism, osmolarity and higher brain function. Front Comput Neurosci 7:114. doi:10.3389/fncom.2013.00114

    Article  PubMed  PubMed Central  Google Scholar 

  • Hescheler J, Rosenthal W, Trautwein W, Schultz G (1987) The GTP-binding protein, Go, regulates neuronal calcium channels. Nature 325:445–447

    Article  PubMed  CAS  Google Scholar 

  • Hevesy G (1923) The absorption and translocation of lead by plants: a contribution to the application of the method of radioactive indicators in the investigation of the change of substance in plants. Biochem J 17:439–445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hinke JA (1961) The measurement of sodium and potassium activities in the squid axon by means of cation-selective glass microelectrodes. J Physiol 156:314–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hipólito L, Sánchez-Catalán MJ, Zanolini I, Polache A, Granero L (2008) Shell/core differences in mu- and delta-opioid receptor modulation of dopamine efflux in nucleus accumbens. Neuropharmacology 55:183–189

    Article  PubMed  CAS  Google Scholar 

  • Hirose N, Murakawa K, Takada K, Oi Y, Suzuki T, Nagase H, Cools AR, Koshikawa N (2005) Interactions among mu- and delta-opioid receptors, especially putative delta1- and delta2-opioid receptors, promote dopamine release in the nucleus accumbens. Neuroscience 135:213–225

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952a) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449–472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952b) The components of membrane conductance in the giant axon of Loligo. J Physiol 116:473–496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol 108:37–77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hofmeier G, Lux HD (1981) The time courses of intracellular free calcium and related electrical effects after injection of CaCl2 into neurons of the snail, Helix pomatia. Pflugers Arch 391:242–251

    Article  PubMed  CAS  Google Scholar 

  • Holthoff K, Tasy D, Yuste R (2002) Calcium dynamics of spines depend on their dendritic location. Neuron 33:425–437

    Article  PubMed  CAS  Google Scholar 

  • Hrabìtová S, Nicholson C (2007) Biophysical properties of brain extracellular space explored with ion-selective microelectrodes, integrative optical imaging and related techniques. In: Michael AC, Borland LM (eds) Electrochemical methods for neuroscience. CRC Press, Boca Raton, pp 167–204

    Google Scholar 

  • Ikeda K, Kobayashi T, Ichikawa T, Usui H, Humanishi T (1995) Functional couplings of the δ- and κ-opioid receptors with the G-protein-activated K+ channel. Biochem Biophys Res Commun 208:302–308

    Article  PubMed  CAS  Google Scholar 

  • Ikeda SR (1996) Voltage-dependent modulation of N-type calcium channels by G-protein beta gamma subunits. Nature 380:255–258

    Article  PubMed  CAS  Google Scholar 

  • Ikura M, Ames JB (2006) Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality. Proc Natl Acad Sci U S A 103:1159–1164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inglese M, Madelin G, Oesingmann N, Babb JS, Wu W, Stoeckel B, Herbert J, Johnson G (2010) Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 tesla. Brain 133:847–857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Isard JO (1959) Alkali ion determinations by means of glass electrodes. Nature 184:1616–1618

    Article  Google Scholar 

  • Ito S, Ohta T, Nakazato Y (1997) Changes in intracellular Na+ concentration evoked by nicotinic receptor activation in the guinea-pig adrenal chromaffin cells. Neurosci Lett 238:111–114

    Article  PubMed  CAS  Google Scholar 

  • Jaffe DB, Johnston D, Lasser-Ross N, Lisman J, Miyakawa H, Ross WN (1992) The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature 357:244–246

    Article  PubMed  CAS  Google Scholar 

  • Janiri L, d’Amato R, Zieglgänsberger W (1988) Dynorphin1-17 reduces the inhibitory actions of mu- and delta-selective opioid agonists in cortical neurons of the rat in vivo. Neurosci Lett 84:79–83

    Article  PubMed  CAS  Google Scholar 

  • Jewell EA, Lingrel JB (1991) Comparison of the substrate dependence properties of the rat Na, K-ATPase alpha 1, alpha 2, and alpha 3 isoforms expressed in HeLa cells. J Biol Chem 266:16925–16930

    PubMed  CAS  Google Scholar 

  • Jiang C, Agulian S, Haddad GG (1992) Cl− and Na+ homeostasis during anoxia in rat hypoglossal neurons: interacellular and extracellular in vitro studies. J Physiol 448:697–708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang C, Haddad GG (1991) Effect of anoxia in intracellular and extracellular potassium activity in hypoglossal neurons in vitro. J Neurophysiol 66:103–111

    PubMed  CAS  Google Scholar 

  • Jiang D, Zhao L, Clapham DE (2009) Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326:144–147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin W, Lee NM, Loh HH, Thayer SA (1992) Dual excitatory and inhibitory effects of opioids on intracellular calcium in neuroblastoma x glioma hybrid NG108-15 cells. Mol Pharmacol 42:1083–1089

    PubMed  CAS  Google Scholar 

  • Jin W, Lee NM, Loh HH, Thayer SA (1994) Opioid mobilize calcium from inositol 1,4,5-trisphosphate-sensitive store in NG108-15 cells. J Neurosci 14:1920–1929

    PubMed  CAS  Google Scholar 

  • Jose X, Pineda JC, Rodriguez C, Mendoza E, Galarraga E, Bargas J, Barral J (2007) δ opioids reduce the neurotransmitter release probability by enhancing transient (Kv4) K+-currents in corticostriatal synapses as evaluated by the paired pulse protocol. Neurosci Lett 414:150–154

    Article  PubMed  CAS  Google Scholar 

  • Juhaszova M, Blaustein MP (1997) Na+ pump low and high ouabain affinity alpha subunit isoforms are differently distributed in cells. Proc Natl Acad Sci U S A 94:1800–1805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juhaszova M, Shimizu H, Borin ML, Yip RK, Santiago EM, Lindenmayer GE, Blaustein MP (1996) Localization of the Na+-Ca2+ exchanger in vascular smooth muscle, and in neurons and astrocytes. Ann N Y Acad Sci 779:318–335

    Article  PubMed  CAS  Google Scholar 

  • Jung DW, Baysal K, Brierley GP (1995) The sodium-calcium antiport of heart mitochondria is not electroneutral. J Biol Chem 270:672–678

    Article  PubMed  CAS  Google Scholar 

  • Jutkiewicz EM, Baladi MG, Folk JE, Rice KC, Woods JH (2006) The convulsive and electroencephalographic changes produced by nonpeptidic delta-opioid agonists in rats: comparison with pentylenetetrazol. J Pharmacol Exp Ther 317:1337–1348

    Article  PubMed  CAS  Google Scholar 

  • Jutkiewicz EM, Baladi MG, Folk JE, Rice KC, Woods JH (2008) The delta-opioid receptor agonist SNC80 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-(3-methoxybenzyl)-N, N-diethylbenzamide] synergistically enhances the locomotor-activating effects of some psychomotor stimulants, but not direct dopamine agonists, in rats. J Pharmacol Exp Ther 324:714–724

    Article  PubMed  CAS  Google Scholar 

  • Jutkiewicz EM, Rice KC, Traynor JR, Woods JH (2005) Separation of the convulsions and antidepressant-like effects produced by the delta-opioid agonist SNC80 in rats. Psychopharmacology (Berl) 182:588–596

    Article  CAS  Google Scholar 

  • Kadamur G, Ross EM (2013) Mammalian phospholipase C. Annu Rev Physiol 75:127–154

    Article  PubMed  CAS  Google Scholar 

  • Kaila K, Lamsa K, Smirnov S, Taira T, Voipio J (1997) Long-lasting GABA-mediated depolarization evoked by high-frequency stimulation in pyramidal neurons of rat hippocampal slices is attributable to a network-driven, bicarbonate-dependent K+ transient. J Neurosci 17:7662–7672

    PubMed  CAS  Google Scholar 

  • Kaila K, Rydqvist B, Swerup C, Voipio J (1987) Stimulation-induced changes in the intracellular sodium activity of the crayfish stretch receptor. Neurosci Lett 74:53–57

    Article  PubMed  CAS  Google Scholar 

  • Kang SH, Carl A, McHugh JM, Goff HR, Kenyon JL (2008) Role of mitochondria and temperature in the control of intracellular calcium in adult rat sensory neurons. Cell Calcium 43:388–404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang X, Chao D, Gu Q, Ding G, Wang Y, Balboni G, Lazarus LH, Xia Y (2009) Delta-opioid receptors protect from anoxic disruption of Na+ homeostasis via Na+ channel regulation. Cell Mol Life Sci 66:3505–3516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang-Park M-H, Kieffer BL, Roberts AJ, Siggins GR, Moore SD (2007) Presyanptic δ opioid receptors regulates ethanol actions in central amygdala. J Pharmacol Exp Ther 320:917–925

    Article  PubMed  CAS  Google Scholar 

  • Karschin C, Dissmann E, Stühmer W, Karschin A (1996) GIRK(1-3) and GIRK(1-4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J Neurosci 16:3559–3570

    PubMed  CAS  Google Scholar 

  • Katsuura Y, Taha SA (2010) Modulation of feeding and locomotion through mu and delta opioid receptor signaling in the nucleus accumbens. Neuropeptides 44:225–232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katz A, Wu D, Simon MI (1992) Subunits beta gamma of heterotrimeric G protein activate beta 2 isoform of phospholipase C. Nature 360:686–689

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto EM, Vivar C, Camandola S (2012) Physiology and pathology of calcium signaling in the brain. Front Pharmacol 3:61. doi:10.3389/fphar.2012.00061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kazmi SM, Mishra RK (1986) Opioid receptors in human neuroblastoma SH-SY5Y cells: evidence for distinct morphine (mu) and enkephalin (delta) binding sites. Biochem Biophys Res Commun 137:813–820

    Article  PubMed  CAS  Google Scholar 

  • Kelly T, Kafitz KW, Roderigo C, Rose CR (2009) Ammonium-evoked alterations in intracellular sodium and pH reduce glial glutamate transport activity. Glia 57:921–934

    Article  PubMed  Google Scholar 

  • Kelly T, Rose CR (2010) Ammonium influx pathways into astrocytes and neurones of hippocampal slices. J Neurochem 115:1123–1136

    Article  PubMed  CAS  Google Scholar 

  • Kennedy C, Krier J (1987) δ-opioid receptors mediate inhibition of fast excitatory postsynaptic potentials in cat parasympathetic colonic ganglia. Br J Pharmacol 92:437–443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keren O, Gafni M, Sarne Y (1997) Opioids potentiate transmitter release from SK-N-SH human neuroblastoma cells by modulating N-type calcium channels. Brain Res 764:277–282

    Article  PubMed  CAS  Google Scholar 

  • Khakh BS (2001) Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci 2:165–174

    Article  PubMed  CAS  Google Scholar 

  • Khakh BS, North RA (2012) Neuromodulation by extracellular ATP and P2X receptors in the CNS. Neuron 76:51–69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kiedrowski L (1999) N-methyl-D-aspartate excitotoxicity: relationships among plasma membrane potential, Na(+)/Ca(2+) exchange, mitochondrial Ca(2+) overload, and cytoplasmic concentrations of Ca(2+), H(+), and K(+). Mol Pharmacol 56:619–632

    PubMed  CAS  Google Scholar 

  • Kiedrowski L, Brooker G, Costa E, Wroblewski JT (1994a) Glutamate impairs neuronal calcium extrusion while reducing sodium gradient. Neuron 12:295–300

    Article  PubMed  CAS  Google Scholar 

  • Kiedrowski L, Wroblewski JT, Costa E (1994b) Intracellular sodium concentration in cultured cerebellar granule cells challenged with glutamate. Mol Pharmacol 45:1050–1054

    PubMed  CAS  Google Scholar 

  • Kieffer BL, Befort K, Gaveriaux-Ruff C, Hirth CG (1992) The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci U S A 89:12048–12052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimelberg HK, Bowman C, Biddlecome S, Bourke RS (1979) Cation transport and membrane potential properties of primary astroglial cultures from neonatal rat brains. Brain Res 177:533–550

    Article  PubMed  CAS  Google Scholar 

  • Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    Article  PubMed  CAS  Google Scholar 

  • Kirischuk S, Kettenmann H, Verkhratsky A (1997) Na+/Ca2+ exchanger modulates kainate-triggered Ca2+ signaling in Bergmann glial cells in situ. FASEB J 11:566–572

    PubMed  CAS  Google Scholar 

  • Kirischuk S, Kettenmann H, Verkhratsky A (2007) Membrane currents and cytoplasmic sodium transients generated by glutamate transport in Bergmann glial cells. Pflugers Arch 454:245–252

    Article  PubMed  CAS  Google Scholar 

  • Kirischuk S, Parpura V, Verkhratsky A (2012) Sodium dynamics: another key to astroglial excitability? Trends Neurosci 35:497–506

    Article  PubMed  CAS  Google Scholar 

  • Knapp RJ, Santoro G, De Leon IA, Lee KB, Edsall SA, Waite S, Porreca F, Roeske WR, Yamamura HI (1996) Structure-activity relationships for SNC80 and related compounds at cloned human delta and mu opioid receptors. J Pharmacol Exp Ther 277:1284–1291

    PubMed  CAS  Google Scholar 

  • Knöpfel T, Anchisi D, Alojado ME, Tempia F, Strata P (2000) Elevation of intracellular sodium concentration mediated by synaptic activation of metabotropic glutamate receptors in cerebellar Purkinje cells. Eur J Neurosci 12:2199–2204

    Article  PubMed  Google Scholar 

  • Knöpfel T, Guatteo E, Bernardi G, Mercuri NB (1998) Hyperpolarization induces a rise in intracellular sodium concentration in dopamine cells of the substantia nigra pars compacta. Eur J Neurosci 10:1926–1929

    Article  PubMed  Google Scholar 

  • Kobayashi C, Ohkura M, Nakai J, Matsuki N, Ikegaya Y, Sasaki T (2014) Large-scale imaging of subcellular calcium dynamics of cortical neurons with G-CaMP6-actin. Neuroreport 25(7):501–506

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Ikeda K, Ichikawa T, Abe S, Togashi S, Kumanishi T (1995) Molecular cloning of a mouse G-protein-activated K+ channel (mGIRK1) and distinct distributions of three GIRK (GIRK1, 2 and 3) mRNAs in mouse brain. Biochem Biophys Res Commun 208:1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Kocsis JD, Eng DL, Gordon TR, Waxman SG (1987) Functional differences between 4-aminopyridine and tetraethylammonium-sensitive potassium channels in myelinated axons. Neurosci Lett 75:193–198

    Article  PubMed  CAS  Google Scholar 

  • Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129:1045–1056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kofuji P, Newman EA (2009) Regulation of potassium by glial cells in the central nervous system. In: Parpura V, Haydon P (eds) Astrocytes in (patho)physiology of the nervous system, vol 6. Springer, New York, pp 151–175

    Chapter  Google Scholar 

  • Kornblum HI, Hurlbut DE, Leslie FM (1987) Postnatal development of multiple opioid receptors in rat brain. Brain Res 465:21–41

    Article  PubMed  CAS  Google Scholar 

  • Koss DJ, Riedel G, Bence K, Platt B (2013) Store-operated Ca2+ entry in hippocampal neurons: regulation by protein tyrosine phosphatase PTP1B. Cell Calcium 53:125–138

    Article  PubMed  CAS  Google Scholar 

  • Kozoriz MG, Church J, Ozog MA, Naus CC, Krebs C (2010) Temporary sequestration of potassium by mitochondria in astrocytes. J Biol Chem 285:31107–31119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kraig PR, Nicholson C (1978) Extracellular ionic variations during spreading depression. Neuroscience 3:1045–1059

    Article  PubMed  CAS  Google Scholar 

  • Kraig RP, Nicholson C (1976) Sodium liquid ion exchanger microelectrode used to measure large extracellular sodium transients. Science 194:725–726

    Article  PubMed  CAS  Google Scholar 

  • Krapivinsky G, Gordon EA, Wickman K, Velimirović B, Krapivinsky L, Clapham DE (1995) The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins. Nature 374:135–141

    Article  PubMed  CAS  Google Scholar 

  • Kreutz MR, Naranjo JR, Koch K, Schwaller B (2012) The neuronal functions of EF-hand Ca(2+)-binding proteins. Front Mol Neurosci 5:92, http://www.frontiersin.org/Molecular_Neuroscience/researchtopics/The_neuronal_functions_of_EF-h/585

    Article  PubMed  PubMed Central  Google Scholar 

  • Křfž N, Syková E, Vyklický L (1975) Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission. J Physiol 249:167–182

    Article  Google Scholar 

  • Krnjević K, Morris ME (1972) Extracellular K+ activity and slow potential changes in spinal cord and medulla. Can J Physiol Pharmacol 50:1214–1217

    Article  PubMed  Google Scholar 

  • Kucheryavykh YV, Kucheryavykh LY, Nichols CG, Maldonado HM, Baksi K, Reichenbach A, Skatchkov SN, Eaton MJ (2007) Downregulation of Kir4.1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes. Glia 55:274–281

    Article  PubMed  CAS  Google Scholar 

  • Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibian. J Neurophysiol 29:768–787

    PubMed  CAS  Google Scholar 

  • Kunkel MT, Peralta EG (1995) Identification of domains conferring G protein regulation on inward rectifier potassium channels. Cell 83:443–449

    Article  PubMed  CAS  Google Scholar 

  • Kuruma A, Inoue T, Mikoshiba K (2003) Dynamics of Ca2+ and Na+ in the dendrites of mouse cerebral Purkinje cells evoked by parallel fibre stimulation. Eur J Neurosci 18:2677–2689

    Article  PubMed  Google Scholar 

  • Lalo U, Pankratov Y, Parpura V, Verkhratsky A (2011) Ionotropic receptors in neuronal-astroglial signalling: what is the role of “excitable” molecules in non-excitable cells. Biochim Biophys Acta 1813:992–1002

    Article  PubMed  CAS  Google Scholar 

  • Lam AK, Galione A (2013) The endoplasmic reticulum and junctional membranes communication during calcium signaling. Biochim Biophys Acta 1833:2542–2559

    Article  PubMed  CAS  Google Scholar 

  • Langer J, Rose CR (2009) Synaptically induced sodium signals in hippocampal astrocytes in situ. J Physiol 587:5859–5877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Langer J, Stephan J, Theis M, Rose CR (2012) Gap junctions mediate intercellular spread of sodium between hippocampal astrocytes in situ. Glia 60:239–252

    Article  PubMed  Google Scholar 

  • Lasser-Ross N, Ross WN (1992) Imaging voltage and synaptically activated sodium transients in cerebellar Purkinje cells. Proc Biol Soc 247:35–39

    Article  CAS  Google Scholar 

  • Laurent V, Bertran-Gonzalez J, Chieng BC, Balleine BW (2014) δ-opioid and dopaminergic processes in accumbens shell modulate the cholinergic control of predictive learning and choice. J Neurosci 34:1358–1369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laurent V, Leung B, Maidment N, Balleine BW (2012) μ- and δ-opioid-related processes in the accumbens core and shell differentially mediate the influence of reward-guided and stimulus-guided decisions on choice. J Neurosci 32:1875–1883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Law PY, Hom DS, Loh HH (1983) Opiate regulation of adenosine 3′:5′-cyclic monophosphate level in neuroblastoma X glioma NG108-15 hybrid cells. Relationship between receptor occupancy and effect. Mol Pharmacol 23:26–35

    PubMed  CAS  Google Scholar 

  • Law PY, Wong YH, Loh HH (2000) Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 40:389–430

    Article  PubMed  CAS  Google Scholar 

  • Le Moine C, Fauchey V, Jaber M (2002) Opioid receptor gene expression in dopamine transporter knock-out mice in adult and during development. Neuroscience 112:131–139

    Article  PubMed  Google Scholar 

  • Lee D, Lee KH, Ho WK, Lee SH (2007) Target cell-specific involvement of presynaptic mitochondria in post-tetanic potentiation at hippocampal mossy fiber synapses. J Neurosci 27:13603–13613

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Ho WK, Lee SH (2009) Characterization of somatic Ca2+ clearance mechanisms in young and mature hippocampal granule cells. Cell Calcium 45:465–473

    Article  PubMed  CAS  Google Scholar 

  • Lee SK, Boron WF, Parker MD (2013) Monitoring ion activities in and around cells using ion-selective liquid-membrane microelectrodes. Sensors (Basel) 13:984–1003

    Article  CAS  Google Scholar 

  • Lenard B, Kintner DB, Shull GE, Sun D (2004) Na-K-Cl cotransporter-mediated intracellular Na+ accumulation affects Ca2+ signaling in astrocytes in an in vitro ischemic model. J Neurosci 24:9585–9597

    Article  CAS  Google Scholar 

  • Leng T, Shi Y, Xiong ZG, Sun D (2014) Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke? Prog Neurobiol 115:189–209

    Article  PubMed  CAS  Google Scholar 

  • Leybaert L, Sanderson MJ (2012) Intercellular Ca2+ waves: mechanisms and function. Physiol Rev 92:1359–1392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang J, Chao D, Sandhu HK, Yu Y, Zhang L, Balboni G, Xia Y (2014) δ-opioid receptors up-regulate excitatory amino acid transporters in mouse astrocytes. Br J Pharmacol 171(23):5417–5430. doi:10.1111/bph.12857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim YJ, Zheng S, Zuo Z (2004) Morphine preconditions purkinje cells against cell death under in vitro simulated ischemia-reperfusion conditions. Anesthesiology 100:562–568

    Article  PubMed  CAS  Google Scholar 

  • Linden DJ, Smeyne M, Connor JA (1993) Induction of cerebellar long-term depression in culture requires postsynaptic action of sodium ions. Neuron 11:1093–1100

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Slevin JR, Lu C, Chan SL, Hansson M, Elmér E, Mattson MP (2003) Involvement of mitochondrial K+ release and cellular efflux in ischemic and apoptotic neuronal death. J Neurochem 86:966–979

    Article  PubMed  CAS  Google Scholar 

  • Liu SJ, Zukin RS (2007) Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci 30:126–134

    Article  PubMed  CAS  Google Scholar 

  • Longoni R, Spina L, Mulas A, Carboni E, Garau L, Melchiorri P, Di Chiara G (1991) (D-Ala2)deltorphin II: D1-dependent stereotypies and stimulation of dopamine release in the nucleus accumbens. J Neurosci 11:1565–1576

    PubMed  CAS  Google Scholar 

  • Longuemare MC, Rose CR, Farrell K, Ransom BR, Waxman SG, Swanson RA (1999) K+-induced reversal of astrocyte glutamate uptake is limited by compensatory changes in intracellular Na+. Neuroscience 93:285–292

    Article  PubMed  CAS  Google Scholar 

  • Lopachin RM, Gaughan CL (1999) Electron probe X-ray microanalysis: a quantitative electron microscopy technique for measurement of elements and water in nervous tissue cells. Methods Mol Med 22:289–299

    PubMed  CAS  Google Scholar 

  • LoPachin RM, Gaughan CL, Lehning EJ, Weber ML, Taylor CP (2001) Effects of ion channel blockade on the distribution of Na, K, Ca and other elements in oxygen-glucose deprived CA1 hippocampal neurons. Neuroscience 103:971–983

    Article  PubMed  CAS  Google Scholar 

  • Lord JA, Waterfield AA, Hughes J, Kosterlitz HW (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267:495–499

    Article  PubMed  CAS  Google Scholar 

  • Lothman EW, Somjen GG (1975) Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord. J Physiol 252:115–136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lux HD, Neher E (1973) The equilibration time course of [K+]0 in cat cortex. Exp Brain Res 17:190–205

    Article  PubMed  CAS  Google Scholar 

  • Ly CV, Verstreken P (2006) Mitochondria at synapse. Neuroscientist 12:291–299

    Article  PubMed  CAS  Google Scholar 

  • Ma MC, Qian H, Ghassemi F, Zhao P, Xia Y (2005) Oxygen sensitive δ-opioid receptor-regulated survival and death signals: novel insights into neuronal preconditioning and protection. J Biol Chem 280:16208–16218

    Article  PubMed  CAS  Google Scholar 

  • MacAulay N, Zeuthen T (2012) Glial K+ clearance and cell swelling: key roles for cotransporters and pumps. Neurochem Res 37:2299–2309

    Article  PubMed  CAS  Google Scholar 

  • Maderspach K, Solomonia R (1988) Glial and neuronal opioid receptors: apparent positive cooperativity observed in intact cultured cells. Brain Res 441:41–47

    Article  PubMed  CAS  Google Scholar 

  • Madison DV, Nicoll RA (1988) Enkephalin hyperpolarizes interneurones in the rat hippocampus. J Physiol 398:123–130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Madsen KK, White HS, Schousboe A (2010) Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs. Pharmacol Ther 125:394–401

    Article  PubMed  CAS  Google Scholar 

  • Magee JC, Carruth M (1999) Dendritic voltage-gated ion channels regulate the action potential firing model of hippocampal CA1 pyramidal neurons. J Neurophysiol 82:1895–1901

    PubMed  CAS  Google Scholar 

  • Majewska A, Brown E, Ross J, Yuste R (2000) Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. J Neurosci 20:1722–1734

    PubMed  CAS  Google Scholar 

  • Maldonado PP, Vélez-Fort M, Levavasseur F, Angulo MC (2013) Oligodendrocyte precursor cells are accurate sensors of local K+ in mature gray matter. J Neurosci 33:2432–2442

    Article  PubMed  CAS  Google Scholar 

  • Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V, Hendel T, Reiff DF, Levelt C, Borst A, Bonhoeffer T, Hübener M, Griesbeck O (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5:805–811

    Article  PubMed  CAS  Google Scholar 

  • Mansour A, Fox CA, Burke S, Meng F, Thompson RC, Akil H, Watson SJ (1994) Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol 350:412–438

    Article  PubMed  CAS  Google Scholar 

  • Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1987) Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci 7:2445–2464

    PubMed  CAS  Google Scholar 

  • Maragakis NJ, Rothstein JD (2004) Glutamate transporters: animal models to neurologic disease. Neurobiol Dis 15:461–473

    Article  PubMed  CAS  Google Scholar 

  • Margolis EB, Fields HL, Hjelmstad GO, Mitchell JM (2008) Delta-opioid receptor expression in the ventral tegmental area protects against elevated alcohol consumption. J Neurosci 28:12672–12681

    Article  PubMed  CAS  Google Scholar 

  • Marker CL, Luján R, Loh HH, Wickman K (2005) Spinal G-protein-gated potassium channels contribute in a dose-dependent manner too the analgesic effect of μ- and δ- but not κ-opioids. J Neurosci 25:3551–3559

    Article  PubMed  CAS  Google Scholar 

  • Martin WR (1967) Opioid antagonists. Pharmacol Rev 19:463–521

    PubMed  CAS  Google Scholar 

  • Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    PubMed  CAS  Google Scholar 

  • Masino SA, Dulla CG (2005) Adenosine, glutamate and pH: interactions and implications. Neurol Res 27:149–152

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matyash M, Matyash V, Nolte C, Sorrentino V, Kettenmann H (2002) Requirement of functional ryanodine receptor type 3 for astrocyte migration. FASEB J 16:84–86

    PubMed  CAS  Google Scholar 

  • Mayevsky A, Zeuthen T, Chance B (1974) Measurements of extracellular potassium, ECoG and pyridine nucleotide levels during cortical spreading depression in rats. Brain Res 76:347–349

    Article  PubMed  CAS  Google Scholar 

  • Mayfield KP, Kozak W, Malvin GM, Porreca F (1996) Hypoxia decreases opioid delta receptor expression in mouse brain. Neuroscience 72:785–789

    Article  PubMed  CAS  Google Scholar 

  • McGrail KM, Phillips JM, Sweadner KJ (1991) Immunofluorescent localization of three Na, K-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na, K-ATPase. J Neurosci 11:381–391

    PubMed  CAS  Google Scholar 

  • McKenzie FR, Milligan G (1990) Delta-opioid-receptor-mediated inhibition of adenylate cyclase is transduced specifically by the guanine-nucleotide-binding protein Gi2. Biochem J 267:391–398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McKinnon PJ (2013) Maintaining genome stability in the nervous system. Nat Neurosci 16:1523–1529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meme W, Vandecasteele M, Giaume C, Venance L (2009) Electrical coupling between hippocampal astrocytes in rat brain slices. Neurosci Res 63:236–243

    Article  PubMed  Google Scholar 

  • Meng F, Xie GX, Thompson RC, Mansour A, Goldstein A, Watson SJ, Akil H (1993) Cloning and pharmacological characterization of a rat kappa opioid receptor. Proc Natl Acad Sci U S A 90:9954–9958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Menichella DM, Majdan M, Awatramani R, Goodenough DA, Sirkowski E, Scherer SS, Paul DL (2006) Genetic and physiological evidence that oligodendrocyte gap junction contribute to spatial buffering of potassium released during neuronal activity. J Neurosci 26:10984–10991

    Article  PubMed  CAS  Google Scholar 

  • Messerli MA, Kurtz I, Smith PJ (2008) Characterization of optimized Na+ and Cl− liquid membranes for use with extracellular, self-referencing microelectrodes. Anal Bioanal Chem 390:1355–1359

    Article  PubMed  CAS  Google Scholar 

  • Miller RJ (1990) Receptor-mediated regulation of calcium channels and neurotransmitter release. FASEB J 4:3291–3299

    PubMed  CAS  Google Scholar 

  • Minami M, Toya T, Katao Y, Maekawa K, Nakamura S, Onogi T, Kaneko S, Satoh M (1993) Cloning and expression of a cDNA for the rat kappa-opioid receptor. FEBS Lett 329:291–295

    Article  PubMed  CAS  Google Scholar 

  • Minta A, Tsien RY (1989) Fluorescent indicators for cytosolic sodium. J Biol Chem 264:19449–19457

    PubMed  CAS  Google Scholar 

  • Mitchell JM, Margolis EB, Coker AR, Allen DC, Fields HL (2014) Intra-VTA deltorphin, but not DPDPE, induces place preference in ethanol-drinking rats: distinct DOR-1 and DOR-2 mechanisms control ethanol consumption and reward. Alcohol Clin Exp Res 38:195–203

    Article  PubMed  CAS  Google Scholar 

  • Miura T, Yano T, Naitoh K, Nishihara M, Miki T, Tanno M, Shimamoto K (2007) Delta-opioid receptor activation before ischemia reduces gap junction permeability in ischemic myocardium by PKC-epsilon-mediated phosphorylation of connexin 43. Am J Physiol Heart Circ Physiol 293:H1425–H1431

    Article  PubMed  CAS  Google Scholar 

  • Miyamae T, Fukushima N, Misu Y, Ueda H (1993) Delta opioid receptor mediates phospholipase C activation via Gi in Xenopus oocytes. FEBS Lett 333:311–314

    Article  PubMed  CAS  Google Scholar 

  • Moises HC, Rusin KI, Macdonald RL (1994) Mu- and kappa-opioid receptors selectively reduce the same transient components of high-threshold calcium current in rat dorsal root ganglion sensory neurons. J Neurosci 14:5903–5916

    PubMed  CAS  Google Scholar 

  • Money TG, Rodgers CI, McGregor SM, Robertson RM (2009) Loss of potassium homeostasis underlies hyperthermic conduction failure in control and preconditioned locusts. J Neurophysiol 102:285–293

    Article  PubMed  CAS  Google Scholar 

  • Moore EW, Wilson DW (1963) The determination of sodium in body fluids by the glass electrode. J Clin Invest 42:293–304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore SD, Madamba SG, Schweitzer P, Siggins GB (1994) Voltage-dependent effects of opioid peptides on hippocampal CA3 pyramidal neuros in vitro. J Neurosci 14:809–820

    PubMed  CAS  Google Scholar 

  • Moreau B, Nelson C, Parekh AB (2006) Biphasic regulation of mitochondrial Ca2+ uptake by cytosolic Ca2+ concentration. Curr Biol 16:1672–1677

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Miyazaki M, Iwase H, Maeda M (2002) Temporal profile of changes in brain tissue extracellular space and extracellular ion (Na(+), K(+)) concentrations after cerebral ischemia and the effects of mild cerebral hypothermia. J Neurotrauma 19:1261–1270

    Article  PubMed  Google Scholar 

  • Morikawa H, Fukuda K, Mima H, Shoda T, Kato S, Mori K (1998) Desensitization and resensitization of δ-opioid receptor-mediated Ca2+ channel inhibition in NG108-15 cells. Br J Pharmacol 123:1111–1118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morikawa H, Mima H, Uga H, Shoda T, Fukuda K (1999) Opioid potentiation of N-type Ca2+ channel currents via pertussis-toxin-sensitive G proteins in NG108-15 cells. Pflugers Arch 438:423–426

    PubMed  CAS  Google Scholar 

  • Morris ME, Orbrocea GV, Avoli M (1996) Extracellular K+ accumulations and synchronous GABA-mediated potentials evoked by 4-aminopyridine in the adult rat hippocampus. Exp Brain Res 109:71–82

    Article  PubMed  CAS  Google Scholar 

  • Moulder KL, Meeks JP, Mennerick S (2006) Homeostatic regulation of glutamate release in response to depolarization. Mol Neurobiol 33:133–153

    Article  PubMed  CAS  Google Scholar 

  • Müller M, Somjen GG (2000a) Na+ and K+ concentrations, extra- and intracellular voltages, and the effect of TTX in hypoxic rat hippocampal slices. J Neurophysiol 83:735–745

    PubMed  Google Scholar 

  • Müller M, Somjen GG (2000b) Na(+) dependence and the role of glutamate receptors and Na(+) channels in ion fluxes during hypoxia of rat hippocampal slices. J Neurophysiol 84:1869–1880

    PubMed  Google Scholar 

  • Müller T, Grosche J, Ohlemeyer C, Kettenmann H (1993) NMDA-activated currents in Bergmann glial cells. Neuroreport 4:671–674

    Article  PubMed  Google Scholar 

  • Müller W, Connor JA (1991) Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses. Nature 354:73–76

    Article  PubMed  Google Scholar 

  • Munakata M, Watanabe M, Otsuki T, Nakama H, Arima K, Itoh M, Nabekura J, Iinuma K, Tsuchiya S (2007) Altered distribution of KCC2 in cortical dysplasia in patients with intractable epilepsy. Epilepsia 48:837–844

    Article  PubMed  CAS  Google Scholar 

  • Munsch T, Deitmer JW (1997) Intracellular Ca2+, Na+ and H+ transients evoked by kainate in the leech giant glial cells in situ. Neurosci Res 27:45–56

    Article  PubMed  CAS  Google Scholar 

  • Munzer JS, Daly SE, Jewell-Motz EA, Lingrel JB, Blostein R (1994) Tissue- and isoform-specific kinetic behavior of the Na, K-ATPase. J Biol Chem 269(24):16668–16676

    PubMed  CAS  Google Scholar 

  • Murchison D, Griffith WH (2000) Mitochondria buffer non-toxic calcium loads and release calcium through the mitochondrial permeability transition pore and sodium/calcium exchanger in rat basal forebrain neurons. Brain Res 854:139–151

    Article  PubMed  CAS  Google Scholar 

  • Nah S-Y, Unteutsch A, Bunzow JR, Cook SP, Beacham DW, Grandy DK (1997) μ and δ opioids but not κ opioid inhibit voltage-activated Ba2+ currents in neuronal F-11 cell. Brain Res 766:66–71

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S, Inoue A, Kita T, Nakamura M, Chang AC, Cohen SN, Numa S (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature 278:423–427

    Article  PubMed  CAS  Google Scholar 

  • Namkung W, Padmawar P, Mills AD, Verkman AS (2008) Cell-based fluorescence screen for K+ channels and transporters using an extracellular triazacryptand-based K+ sensor. J Am Chem Soc 130:7794–7795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nayak SV, Rondé P, Spier AD, Lummis SCR, Nichols RA (1999) Calcium changes induced by presynaptic 5-hydroxytryptamine-3 serotonin receptors on isolated terminals from various regions of the rat brain. Neuroscience 91:107–117

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard M, Verkhratsky A (2012) Artifact versus reality—how astrocytes contribute to synaptic events. Glia 60:1013–1023

    Article  PubMed  PubMed Central  Google Scholar 

  • Negus SS, Gatch MB, Mello NK, Zhang X, Rice K (1998) Behavioral effects of the delta-selective opioid agonist SNC80 and related compounds in rhesus monkeys. J Pharmacol Exp Ther 286:362–375

    PubMed  CAS  Google Scholar 

  • Neumaier JF, Mailheau S, Chavkin C (1988) Opioid receptor-mediated responses in the dentate gyrus and CA1 region of the rat hippocampus. J Pharmacol Exp Ther 244:564–570

    PubMed  CAS  Google Scholar 

  • Neusch C, Papadopoulos N, Müller M, Maletzki I, Winter SM, Hirrlinger J, Handschuh M, Bähr M, Richter DW, Kirchhoff F, Hülsmann S (2006) Lack of the Kir4.1 channel subunit abolishes K+ buffering properties of astrocytes in the ventral respiratory group: impact on extracellular K+ regulation. J Neurophysiol 95:1843–1852

    Article  PubMed  CAS  Google Scholar 

  • Nicholls JG, Kuffler SW (1965) Na and K concent of glial cells and neurons determined by flame photometry in the central nervous system of the leech. J Neurophysiol 28:519–525

    PubMed  CAS  Google Scholar 

  • Nicholson C, Ten Bruggencate G, Steinberg R, Stockle H (1977) Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. Proc Natl Acad Sci U S A 74:1287–1290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicot A, Ratnakar PV, Ron Y, Chen CC, Elkabes S (2003) Regulation of gene expression in experimental autoimmune encephalomyelitis indicates early neuronal dysfunction. Brain 126:398–412

    Article  PubMed  Google Scholar 

  • Noble F, Fournie-Zaluski MC, Roques BP (1996) Opposite role of delta 1- and delta 2-opioid receptors activated by endogenous or exogenous opioid agonists on the endogenous cholecystokinin system: further evidence for delta-opioid receptor heterogeneity. Neuroscience 75:917–926

    Article  PubMed  CAS  Google Scholar 

  • Noble F, Smadja C, Roques BP (1994) Role of endogenous cholecystokinin in the facilitation of mu-mediated antinociception by delta-opioid agonists. J Pharmacol Exp Ther 271:1127–1134

    PubMed  CAS  Google Scholar 

  • Noda M, Teranishi Y, Takahashi H, Toyosato M, Notake M, Nakanishi S, Numa S (1982) Isolation and structural organization of the human preproenkephalin gene. Nature 297:431–434

    Article  PubMed  CAS  Google Scholar 

  • Noguchi J, Matsuzaki M, Ellis-Davies GCR, Kasai H (2005) Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron 46:609–622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    Article  PubMed  CAS  Google Scholar 

  • North RA, Williams JT, Surprenant A, Christie MJ (1987) μ and δ receptors belong to a family of receptors that are coupled to potassium channels. Proc Natl Acad Sci U S A 84:5487–5491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nowikovsky K, Pozzan T, Rizzuto R, Scorrano L, Bernardi P (2012) The pathophysiology of LETM1. J Gen Physiol 139:445–454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Doherty J, Garcia-Diaz JF, Armstrong WM (1979) Sodium-selective liquid ion-exchanger microelectrodes for intracellular measurements. Science 203:1349–1351

    Article  PubMed  Google Scholar 

  • O’Donnell ME, Chen YJ, Lam TI, Taylor KC, Walton JH, Anderson SE (2013) Intravenous HOE-642 reduces brain edema and Na uptake in the rat permanent middle cerebral artery occlusion model of stroke: evidence for participation of the blood-brain barrier Na/H exchanger. J Cereb Blood Flow Metab 33:225–234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Obrocea GV, Morris ME (1998) Changes in [K+]o evoked by baclofen in guinea pig hippocampus. Can J Physiol Pharmacol 76:148–154

    Article  PubMed  CAS  Google Scholar 

  • Odermatt B, Wellershaus K, Wallraff A, Seifert G, Degen J, Euwens C, Fuss B, Bussow H, Schilling K, Steinhäuser C, Willecke K (2003) Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J Neurosci 23:4549–4559

    PubMed  CAS  Google Scholar 

  • Oehme M, Kessler M, Simon W (1976) Neutral carrier Ca2+- microelectrode. Chimia 30:204–206

    CAS  Google Scholar 

  • Ohkura M, Sasaki T, Sadakari J, Gengyo-Ando K, Kagawa-Nagamura Y, Kobayashi C, Ikegaya Y, Nakai J (2012) Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals. PLoS One 7, e51286. doi:10.1371/journal.pone.0051286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olesen C, Picard M, Winther AML, Gyrup C, Morth JP, Oxvig C, MØller JV, Nissen P (2007) The structural basis of calcium transport by the calcium pump. Nature 450:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Olianas MC, Dedoni S, Onali P (2012) Potentiation of dopamine D1-like receptor signaling by concomitant activation of δ- and μ-opioid receptors in mouse medial prefrontal cortex. Neurochem Int 61:1404–1416

    Article  PubMed  CAS  Google Scholar 

  • Olsen ML, Campbell SL, Sontheimer H (2007) Differential disruption of Kir4.1 in spinal cord astrocytes suggests regional differences in K+ homeostasis. J Neurophysiol 98:786–793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olsen ML, Sontheimer H (2008) Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neurochem 107:589–601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oostland M, Sellmeijer J, van Hooft JA (2011) Transient expression of functional serotonin 5-HT3 receptors by glutamatergic granule cells in the early postnatal mouse cerebellum. J Physiol 589:4837–4846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29:788–806

    PubMed  CAS  Google Scholar 

  • Orthmann-Murphy JL, Abrams CK, Scherer SS (2008) Gap junctions couple astrocytes and oligodendrocytes. J Mol Neurosci 35:101–116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ostermeier AM, Schlosser B, Schwender D, Sutor B (2000) Activation of mu- and delta-opioid receptors causes presynaptic inhibition of glutamatergic excitation in neocortical neurons. Anesthesiology 93:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Pacheco DF, Duarte DG (2005) δ-opioid receptor agonist SNC80 induces peripheral antinociception via activation of ATP-sensitive K+ channels. Eur J Pharmacol 512:23–28

    Article  PubMed  CAS  Google Scholar 

  • Pacheco DF, Pacheco CMF, Duarte IDG (2012) Peripheral antinociception induced by δ-opioid receptors activation, but not μ- or κ-, is mediated by Ca2+-activated Cl channels. Eur J Pharmacol 674:255–259

    Article  PubMed  CAS  Google Scholar 

  • Padmawar P, Yao X, Bloch O, Manley GT, Verkman AS (2005) K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator. Nat Methods 2:825–827

    Article  PubMed  CAS  Google Scholar 

  • Palmer AE, Tsien RY (2006) Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc 1:1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Palty R, Sekler I (2012) The mitochondrial Na+/Ca2+ exchanger. Cell Calcium 52:9–15

    Article  PubMed  CAS  Google Scholar 

  • Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fishman D, Shoshan-Barmatz V, Herrmann S, Khananshvili D, Sekler I (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci U S A 107:436–441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palygin O, Lalo U, Verkhratsky A, Pankratov Y (2010) Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes. Cell Calcium 48:225–231

    Article  PubMed  CAS  Google Scholar 

  • Pamenter ME, Buck LT (2008) δ-opioid receptor antagonism induces NMDA receptor-dependent excitotoxicity in anoxic turtle cortex. J Exp Biol 211:3512–3517

    Article  PubMed  CAS  Google Scholar 

  • Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD (2008) Chemical calcium indicators. Methods 46:143–151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Verkhratsky A (2012) Homeostatic function of astrocytes: Ca2+ and Na+ signaling. Transl Neurosci 3:334–344

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasternak GW (2004) Multiple opiate receptors: deja vu all over again. Neuropharmacology 47(suppl 1):312–323

    Article  PubMed  CAS  Google Scholar 

  • Patel TR, Schielke GP, Hoff JT, Keep RF, Lorris Betz A (1999) Comparison of cerebral blood flow and injury following intracerebral and subdural hematoma in the rat. Brain Res 829:125–133

    Article  PubMed  CAS  Google Scholar 

  • Patergnani S, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Giorgi C, Marchi S, Missiroli S, Poletti F, Rimessi A, Duszynski J, Wieckowski MR, Pinton P (2011) Calcium signaling around Mitochondria Associated Membranes (MAMs). Cell Commun Sgl 9:19. doi:10.1186/1478-811X-9-19

    Article  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32:1152–1166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng L, Martin-Vasallo P, Sweadner KJ (1997) Isoforms of Na, K-ATPase alpha and beta subunits in the rat cerebellum and in granule cell cultures. J Neurosci 17:3488–3502

    PubMed  CAS  Google Scholar 

  • Pentney RJW, Gratton A (1991) Effects of local delta and mu opioid receptor activation on basal and stimulated dopamine release in striatum and nucleus accumbens of rat: an in vivo electrochemical study. Neuroscience 45:95–102

    Article  PubMed  CAS  Google Scholar 

  • Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Alvarez A, Araque A, Martín ED (2013) Confocal microscopy for astrocyte in vivo imaging: recycle and reuse in microscopy. Front Cell Neurosci 7:51. doi:10.3389/fncel.2013.00051

    Article  PubMed  PubMed Central  Google Scholar 

  • Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, Mootha VK (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 467:291–296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pert CB, Snyder SH (1973) Opiate receptor: demonstration in nervous tissue. Science 179:1011–1014

    Article  PubMed  CAS  Google Scholar 

  • Petersen OH, Michalak M, Verkhratsky A (2005) Calcium signaling: past, present and future. Cell Calcium 38:161–169

    Article  PubMed  CAS  Google Scholar 

  • Pfrieger FW (2010) Role of glial cells in the formation and maintenance of synapses. Brain Res Rev 63:39–46

    Article  PubMed  CAS  Google Scholar 

  • Pieper AA, Brat DJ, O’Hearn E, Krug DK, Kaplin AI, Takahashi K, Greenberg JH, Ginty D, Molliver ME, Snyder SH (2001) Differential neuronal localizations and dynamics of phosphorylated and unphosphorylated type 1 inositol 1,4,5-trisphosphate receptors. Neuroscience 102:433–444

    Article  PubMed  CAS  Google Scholar 

  • Pierce JP, Kelter DT, McEwen BS, Waters EM, Milner TA (2014) Hippocampal mossy fiber leu-enkephalin immunoreactivity in female rats is significantly altered following both acute and chronic stress. J Chem Neuroanat 55:9–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinelis VG, Segal M, Greenberger V, Khodorov BI (1994) Changes in cytosolic sodium caused by a toxic glutamate treatment of cultured hippocampal neurons. Biochem Mol Biol Int 32:475–482

    PubMed  CAS  Google Scholar 

  • Piochon C, Irinopoulou T, Brusciano D, Bailly Y, Mariani J, Levenes C (2007) NMDA receptor contribution to the climbing fiber response in the adult mouse Purkinje cell. J Neurosci 27:10797–10809

    Article  PubMed  CAS  Google Scholar 

  • Piros E, Prather PL, Law PY, Evans CJ, Hales TG (1996) Voltage-dependent inhibition of Ca2+ channels in GH3 cells by cloned μ- and δ-opioid receptors. Mol Pharmacol 50:947–956

    PubMed  CAS  Google Scholar 

  • Piros ET, Charles A, Dong L, Evans C, Hales TG (2000) Cloned δ-opioid receptors in GH3 cells inhibit spontaneous Ca2+ oscillations and prolactin release through Kir channel activation. J Neurophysiol 83:2691–2698

    PubMed  CAS  Google Scholar 

  • Pisani A, Calabresi P, Tozzi A, Bernardi G, Knöpfel T (1998) Early sodium elevations induced by combined oxygen and glucose deprivation in pyramidal cortical neurons. Eur J Neurosci 10:3572–3574

    Article  PubMed  CAS  Google Scholar 

  • Piskorowski RA, Chevaleyre V (2013) Delta-opioid receptors mediate unique plasticity onto parvalbumin-expressing interneurons in area CA2 of the hippocampus. J Neurosci 33:14567–14578

    Article  PubMed  CAS  Google Scholar 

  • Pittaluga A, Olivero G, Di Prisco S, Merega E, Bisio A, Romussi G, Grilli M, Marchi M (2013) Effects of the neoclerodane Hardwickiic acid on the presynaptic opioid receptors which modulate noradrenaline and dopamine release in mouse central nervous system. Neurochem Int 62:354–359

    Article  PubMed  CAS  Google Scholar 

  • Pogorelov A, Budantsev A, Pogorelova V, Mizin I (1997) Assay of acetylcholinesterase activity and elemental composition in brain compartments by electron probe microanalysis. Brain Res Brain Res Protoc 1:44–48

    Article  PubMed  CAS  Google Scholar 

  • Polastron J, Mur M, Mazarguil H, Puget A, Meunier JC, Jauzac P (1994) SK-N-BE: a human neuroblastoma cell line containing two subtypes of delta-opioid receptors. J Neurochem 62:898–906

    Article  PubMed  CAS  Google Scholar 

  • Portoghese PS, Sultana M, Nelson WL, Klein P, Takemori AE (1992) Delta opioid antagonist activity and binding studies of regioisomeric isothiocyanate derivatives of naltrindole: evidence for delta receptor subtypes. J Med Chem 35:4086–4091

    Article  PubMed  CAS  Google Scholar 

  • Pradhan A, Smith M, McGuire B, Evans C, Walwyn W (2013) Chronic inflammatory injury results in increased coupling of delta opioid receptors to voltage-gated Ca2+ channels. Mol Pain 9:8. doi:10.1186/1744-8069-9-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pradhan AA, Befort K, Nozaki C, Gavériaux-Ruff C, Kieffer BL (2011) The delta opioid receptor: an evolving target for the treatment of brain disorders. Trends Pharmacol Sci 32:581–590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233

    Article  PubMed  CAS  Google Scholar 

  • Prince DA, Lux HD, Neher E (1973) Measurement of extracellular potassium activity in cat cortex. Brain Res 50:489–495

    Article  PubMed  CAS  Google Scholar 

  • Pu L, Xu N, Xia P, Gu Q, Ren S, Fucke T, Pei G, Schwarz W (2012) Inhibition of activity of GABA transporter GAT1 by δ-opioid receptor. Evid Based Complement Alternat Med 2012:818451. doi:10.1155/2012/818451

    PubMed  PubMed Central  Google Scholar 

  • Quinlan ME, Alberto CO, Hirasawa M (2008) Short-term potentiation of mEPSCs requires N-, P/Q- and L-type Ca2+ channels and mitochondria in the supraoptic nucleus. J Physiol 586:3147–3161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rada P, Barson JR, Sf L, Hoebel BG (2010) Opioids in the hypothalamus control dopamine and acetylcholine levels in the nucleus accumbens. Brain Res 1312:1–9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rady JJ, Fujimoto JM (1996) Supraspinal delta2 opioid agonist analgesia in Swiss-Webster mice involves spinal GABAA receptors. Pharmacol Biochem Behav 54:363–369

    Article  PubMed  CAS  Google Scholar 

  • Raffaello A, De Stefani D, Rizzuto R (2012) The mitochondrial Ca2+ uniporter. Cell Calcium 52:16–21

    Article  PubMed  CAS  Google Scholar 

  • Raley-Susman KM, Kass IS, Cottrell JE, Newman RB, Chambers G, Wang J (2001) Sodium influx blockade and hypoxic damage to CA1 pyramidal neurons in rat hippocampal slices. J Neurophysiol 86:2715–2726

    PubMed  CAS  Google Scholar 

  • Ransom CB, Ransom BR, Sontheimer H (2000) Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol 522:427–442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rash JE (2010) Molecular disruptions of the panglial syncytium block potassium siphoning and axonal salutatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system. Neuroscience 168:982–1008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rawls SM, McGinty JF (2000) Delta opioid receptors regulate calcium-dependent, amphetamine-evoked glutamate levels in the rat striatum: an in vivo microdialysis study. Brain Res 861:296–304

    Article  PubMed  CAS  Google Scholar 

  • Regehr W (1997) Interplay between sodium and calcium dynamics in granule cell presynaptic terminals. Biophys J 73:2476–2488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reid JM, Paterson DJ (1996) Role of K+ in regulating hypoxic cerebral blood flow in the rat: effect of glibenclamide and ouabain. Am J Physiol 270:H45–H52

    PubMed  CAS  Google Scholar 

  • Remy C, Remy S, Beck H, Swandulla D, Hans D (2004) Modulation of voltage-dependent sodium channels by the δ-agonist SNC80 in acutely isolated rat hippocampal neurons. Neuropharmocology 47:1102–1112

    Article  CAS  Google Scholar 

  • Reyes RC, Verkhratsky A, Parpura V (2012) Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes. ASN Neuro 4, e00075. doi:10.1042/AN20110059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rezaï X, Faget L, Bednarek E, Schwab Y, Kieffer BL, Massotte D (2012) Mouse δ opioid receptors are located on presynaptic afferents to hippocampal pyramidal cells. Cell Mol Neurobiol 32:509–516

    Article  PubMed  CAS  Google Scholar 

  • Rezai X, Kieffer BL, Roux MJ, Massotte D (2013) Delta opioid receptors regulate temporoammonic-activated feedforward inhibition to the mouse CA1 hippocampus. PLoS One 8, e79081. doi:10.1371/journal.pone.0079081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richard-Lalonde M, Nagi K, Audet N, Sleno R, Amraei M, Hogue M, Balboni G, Schiller PW, Bouvier M, Hébert TE, Pineyro G (2013) Conformational dynamics of Kir3.1/Kir3.2 channel activation via δ-opioid receptors. Mol Pharmacol 83:416–428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    Article  PubMed  CAS  Google Scholar 

  • Rose AM, Valdes R Jr (1994) Understanding the sodium pump and its relevance to disease. Clin Chem 40:1674–1685

    PubMed  CAS  Google Scholar 

  • Rose CR (2002) Na+ signals at central synapses. Neuroscientist 8:532–539

    Article  PubMed  CAS  Google Scholar 

  • Rose CR (2003) High-resolution Na+ imaging in dendrites and spines. Pflugers Arch 446:317–321

    Article  PubMed  CAS  Google Scholar 

  • Rose CR, Karus C (2013) Two sides of the same coin: sodium homeostasis and signaling in astrocytes under physiological and pathophysiological conditions. Glia 61:1191–1205

    Article  PubMed  Google Scholar 

  • Rose CR, Konnerth A (2001) NMDA receptor-mediated Na+ signals in spines and dendrites. J Neurosci 21:4207–4214

    PubMed  CAS  Google Scholar 

  • Rose CR, Kovaichuk Y, Eilers J (1999) Two-photon Na+ imaging in spines and fine dendrites of central neurons. Pflugers Arch 439:201–207

    PubMed  CAS  Google Scholar 

  • Rose CR, Ransom BR (1996a) Intracellular sodium homeostasis in rat hippocampal astrocytes. J Physiol 491:291–305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rose CR, Ransom BR (1996b) Mechanisms of H+ and Na+ changes induced by glutamate, kainate, and D-aspartate in rat hippocampal astrocytes. J Neurosci 16:5393–5404

    PubMed  CAS  Google Scholar 

  • Rose CR, Ransom BR (1997a) Gap junctions equalize intracellular Na+ concentration in astrocytes. Glia 20:299–307

    Article  PubMed  CAS  Google Scholar 

  • Rose CR, Ransom BR (1997b) Regulation of intracellular sodium in cultured rat hippocampal neurons. J Physiol 499:573–587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rose CR, Ransom BR, Waxman SG (1997) Pharmacological characterization of Na+ influx via voltage-gated Na+ channels in spinal cord astrocytes. J Neurophysiol 78:3249–3258

    PubMed  CAS  Google Scholar 

  • Rose CR, Waxman SG, Ransom BR (1998) Effects of glucose deprivation, chemical hypoxia, and simulated ischemia on Na+ homeostasis in rat spinal cord astrocytes. J Neurosci 18:3554–3562

    PubMed  CAS  Google Scholar 

  • Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555

    Article  PubMed  CAS  Google Scholar 

  • Rouach N, Koulakoff A, Giaume C (2004) Neurons set the tone of gap junctional communication in astrocytic networks. Neurochem Int 45:265–272

    Article  PubMed  CAS  Google Scholar 

  • Russell JM (2000) sodium-potassium-chloride cotransport. Physiol Rev 80:211–276

    PubMed  CAS  Google Scholar 

  • Sabatini BL, Maravall M, Svoboda K (2001) Ca2+ signaling in dendritic spines. Curr Opin Neurobiol 11:349–356

    Article  PubMed  CAS  Google Scholar 

  • Sabatini B, Oertner TG, Svoboda K (2002) The life cycle of Ca2+ ions in dendritic spines. Neuron 33:439–452

    Article  PubMed  CAS  Google Scholar 

  • Saloman JL, Niu KY, Ro JY (2011) Activation of peripheral delta-opioid receptors leads to anti-hyperalgesic responses in the masseter muscle of male and female rats. Neuroscience 190:379–385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samways DS, Henderson G (2006) Opioid elevation of intracellular free calcium: possible mechanisms and physiological relevance. Cell Signal 18:151–161

    Article  PubMed  CAS  Google Scholar 

  • Sandor NT, Lendvai B, Vizi ES (1992) Effect of selective opiate antagonists on striatal acetylchonline and dopamine release. Brain Res Bull 29:369–373

    Article  PubMed  CAS  Google Scholar 

  • Santamaria F, Wils S, De Schutter E, Augustine GJ (2006) Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52:635–648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santo-Domingo J, Demaurex N (2010) Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta 1797:907–912

    Article  PubMed  CAS  Google Scholar 

  • Sarne Y, Gafni M (1996) Determinants of the stimulatory opioid effect on intracellular calcium in SK-N-SH and NG108-15 neuroblastoma. Brain Res 722:203–206

    Article  PubMed  CAS  Google Scholar 

  • Saubermann AJ, Beeuwkes R, Peters PD (1981a) Application of scanning electron microscopy to X-ray analysis of frozen-hydrated sections. II. Analysis of standard solutions and artificial electrolyte gradients. J Cell Biol 88:268–273

    Article  PubMed  CAS  Google Scholar 

  • Saubermann AJ, Echlin P, Peters PD, Beeuwkes R (1981b) Application of scanning electron microscopy to X-ray analysis of frozen-hydrated sections. I. Specimen handling techniques. J Cell Biol 88:257–267

    Article  PubMed  CAS  Google Scholar 

  • Scherrer G, Tryoen-Tóth P, Filliol D, Matifas A, Laustriat D, Cao YQ, Basbaum AI, Dierich A, Vonesh JL, Gavériaux-Ruff C, Kieffer BL (2006) Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proc Natl Acad Sci U S A 103:9691–9696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schreiner AE, Rose CR (2012) Quantitative imaging of intracellular sodium. In: Méndez-Vilas A (ed) Current microscopy contributions to advances in science and technology. Formatex, Badajoz, pp 119–129

    Google Scholar 

  • Schwaller B (2009) The continuing disappearance of “pure” Ca2+ buffers. Cell Mol Life Sci 66:275–300

    Article  PubMed  CAS  Google Scholar 

  • Schwaller B (2010) Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol 2:a004051. doi:10.1101/cshperspect.a004051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seifert G, Hüttmann K, Binder DK, Hartmann C, Wyczynski A, Neusch C, Steinhäuser C (2009) Analysis of astroglial K+ channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit. J Neurosci 29:7474–7488

    Article  PubMed  CAS  Google Scholar 

  • Shabala L, Howells C, West AK, Chung RS (2010) Prolonged Abeta treatment leads to impairment in the ability of primary cortical neurons to maintain K+ and Ca2+ homeostasis. Mol Neurodegener 5:30. doi:10.1186/1750-1326-5-30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shao Y, McCarthy KD (1997) Responses of Bergmann glia and granule neurons in situ to N-methyl-D-aspartate, norepinephrine, and high potassium. J Neurochem 68:2405–2411

    Article  PubMed  CAS  Google Scholar 

  • Sharp AH, McPherson PS, Dawson TM, Aoki C, Campbell KP, Snyder SH (1993) Differential immunohistochemical localization of inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain. J Neurosci 13:3051–3063

    PubMed  CAS  Google Scholar 

  • Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheldon C, Diarra A, Cheng YM, Church J (2004) Sodium influx pathways during and after anoxia in rat hippocampal neurons. J Neurosci 24:11057–11069

    Article  PubMed  CAS  Google Scholar 

  • Shen KF, Crain SM (1989) Dual opioid modulation of the action potential duration of mouse dorsal root ganglion neurons in culture. Brain Res 491:227–242

    Article  PubMed  CAS  Google Scholar 

  • Shen KF, Crain SM (1990) Cholera toxin-B subunit blocks excitatory effects of opioids on sensory neuron action potentials indicating that GM1 ganglioside may regulate Gs-linked opioid receptor functions. Brain Res 531:1–7

    Article  PubMed  CAS  Google Scholar 

  • Shen KZ, Johnson SW (2002) Presynaptic modulation of synaptic transmission by opioid receptor in rat subthalamic nucleus in vitro. J Physiol 541:219–230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi Y, Huang F, Chen W, Wu Y, Tang Y, Hu Q (2000) A DPDPE-induced enhancement of inward rectifier potassium current via opioid receptor in neuroblastoma x glioma NG108-15 cells. Neurosci Res 36:209–214

    Article  PubMed  CAS  Google Scholar 

  • Shirasaki T, Abe K, Soeda F, Takahama K (2004) δ-Opioid receptor antagonists inhibit GIRK channel currents in acutely dissociated brainstem neurons of rat. Brain Res 1006:190–197

    Article  PubMed  CAS  Google Scholar 

  • Shirota O, Nagamatsu K, Sekita S (2006) Neo-clerodane diterpenes from the hallucinogenic sage Salvia divinorum. J Nat Prod 69:1782–1786

    Article  PubMed  CAS  Google Scholar 

  • Shutov LP, Kim MS, Houlihan PR, Medvedeva YV, Usachev YM (2013) Mitochondria and plasmamembrane Ca2+-ATPase control presynaptic Ca2+ clearance in capsaicin-sensitive rat sensory neurons. J Physiol 591:2443–2462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sibille J, Pannasch U, Rouach N (2014) Astroglial potassium clearance contributes to short-term plasticity of synaptically evoked currents at the tripartite synapse. J Physiol 592:87–102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silver IA, Deas J, Erecińska M (1997) Ion homeostasis in brain cells: differences in intracellular ion responses to energy limation between cultured neurons and glial cells. Neuroscience 78:589–601

    Article  PubMed  CAS  Google Scholar 

  • Simon EJ, Hiller JM, Edelman I (1973) Stereospecific binding of the potent narcotic analgesic (3H) etorphine to rat-brain homogenate. Proc Natl Acad Sci U S A 70:1947–1949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simpson AWM (1999) Fluorescent measurement of [Ca2+]c. In: Lambert DG (ed) Methods in molecular biology, vol 114, Calcium signaling protocols. Humana Press, Totowa, pp 3–30

    Google Scholar 

  • Slezak M, Pfrieger FW, Soltys Z (2006) Synaptic plasticity, astrocytes and morphological homeostasis. J Physiol Paris 99:84–91

    Article  PubMed  CAS  Google Scholar 

  • Smart D, Lambert DG (1996) δ-opioid stimulate inositol 1,4,5-trisphosphate formation, and so mobilize Ca2+ from intracellular stores, in undifferentiated NG108-15 cells. J Neurochem 66:1462–1467

    Article  PubMed  CAS  Google Scholar 

  • Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, Putney JW (2010) Activation and regulation of store-operated calcium entry. J Cell Mol Med 14:2337–2349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Snead OC III (1986) Opiate-induced seizures: a study of mu and delta specific mechanisms. Exp Neurol 93:348–358

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH, Pasternak GW (2003) Historical review: opioid receptors. Trends Pharmacol Sci 24:198–205

    Article  PubMed  CAS  Google Scholar 

  • Sofuoglu M, Portoghese PS, Takemori AE (1991) Differential antagonism of delta opioid agonists by naltrindole and its benzofuran analog (NTB) in mice: evidence for delta opioid receptor subtypes. J Pharmacol Exp Ther 257:676–680

    PubMed  CAS  Google Scholar 

  • Soler-Llavina GJ, Sabatini BL (2006) Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Nat Neurosci 9:798–806

    Article  PubMed  CAS  Google Scholar 

  • Somjen GG (1979) Extracellular potassium in the mammalian central nervous system. Annu Rev Physiol 41:159–177

    Article  PubMed  CAS  Google Scholar 

  • Somjen GG (2002) Ion regulation in the brain: implications for pathophysiology. Neuroscientist 8:254–267

    Article  PubMed  CAS  Google Scholar 

  • Song S-L, Chueh S-H (1999) Phosphorylation promotes the desensitization of the opioid-induced Ca2+ increase in NG108-15 cells. Brain Res 818(2):316–325

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer H, Black JA, Waxman SG (1996) Voltage-gated Na+ channels in glia: properties and possible functions. Trends Neurosci 19:325–331

    Article  PubMed  CAS  Google Scholar 

  • Spain JW, Roth BL, Coscia CJ (1985) Differential ontogeny of multiple opioid receptors (mu, delta, and kappa). J Neurosci 5:584–588

    PubMed  CAS  Google Scholar 

  • Spencer RJ, Jin W, Thayer SA, Chakrabarti S, Law P-Y, Loh HH (1997) Mobilization of Ca2+ from intracellular store in transfected Neuro2a cells by activation of multiple opioid receptor subtypes. Biochem Pharmacol 54:809–818

    Article  PubMed  CAS  Google Scholar 

  • Spong KE, Robertson RM (2013) Pharmacological blockade of gap junctions induces repetitive surging of extracellular potassium within the locust CNS. J Insect Physiol 59:1031–1040

    Article  PubMed  CAS  Google Scholar 

  • Spruston N, Schiller Y, Stuart G, Sakmann B (1995) Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268:297–300

    Article  PubMed  CAS  Google Scholar 

  • Standford IM, Cooper AJ (1999) Presynaptic μ and δ opioid receptor modulation of GABAA IPSCs in the rat globus pallidus in vitro. J Neurosci 19:4796–4803

    Google Scholar 

  • Stefani A, Surmeier DJ, Bernardi G (1994) Opioids decrease high-voltage activated calcium currents in acutely dissociated neostriatal neurons. Brain Res 642:339–343

    Article  PubMed  CAS  Google Scholar 

  • Steinbeck JA, Henke N, Opatz J, Gruszczynska-Biegala J, Schneider L, Theiss S, Hamacher N, Steinfarz B, Golz S, Brüstle O, Kuznicki J, Methner A (2011) A store-operated calcium entry modulates neuronal network activity in a model of chronic epilepsy. Exp Neurol 232:185–194

    Article  PubMed  CAS  Google Scholar 

  • Steinberg JP, Takamiya K, Shen Y, Xia J, Rubio ME, Yu S, Jin W, Thomas GM, Linden DJ, Huganir RL (2006) Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its interacting protein PICK1 eliminate cerebellar long-term depression. Neuron 49:845–860

    Article  PubMed  CAS  Google Scholar 

  • Steiner RA, Oehme M, Ammann D, Simon W (1979) Neutral carrier sodium ion-selective microelectrode for intracellular studies. Anal Chem 51:351–353

    Article  CAS  Google Scholar 

  • Steinhäuser C, Jabs R, Kettenmann H (1994) Properties of GABA and glutamate responses in identified glial cells of the mouse hippocampal slice. Hippocampus 4:19–35

    Article  PubMed  Google Scholar 

  • Steinhäuser C, Selfert G, Bedber P (2012) Astrocyte dysfunction in temporal lobe epilepsy: K+ channels and gap junction coupling. Glia 60:1192–1202

    Article  PubMed  Google Scholar 

  • Stephan J, Haack N, Kafitz KW, Durry S, Koch D, Hochstrate P, Seifert G, Steinhäuser C, Rose CR (2012) Kir4.1 channels mediate a depolarization of hippocampal astrocytes under hyperammonemic conditions in situ. Glia 60:965–978

    Article  PubMed  Google Scholar 

  • Stiefel MF, Marmarou A (2002) Cation dysfunction associated with cerebral ischemia followed by reperfusion: a comparison of microdialysis and ion-selective electrode methods. J Neurosurg 97:97–103

    Article  PubMed  Google Scholar 

  • Stiefel MF, Tomita Y, Marmarou A (2005) Secondary ischemia impairing the restoration of ion homeostasis following traumatic brain injury. J Neurosurg 103:707–714

    Article  PubMed  Google Scholar 

  • Strohschein S, Hüttmann K, Gabriel S, Binder DK, Heinemann U, Steinhäuser C (2011) Impact of aquaporin-4 channels on K+ buffering and gap junction coupling in the hippocampus. Glia 59:973–980

    Article  PubMed  Google Scholar 

  • Stuart G, Schiller J, Sakmann B (1997) Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol 505:617–632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stummer W, Lorris Betz A, Keep RF (1995) Mechanisms of brain ion homeostasis during acute and chronic variations of plasma potassium. J Cereb Blood Flow Metab 15:336–344

    Article  PubMed  CAS  Google Scholar 

  • Stys PK, Lehning E, Saubermann AJ, LoPachin RM Jr (1997) Intracellular concentrations of major ions in rat myelinated axons and glia: calculations based on electron probe X-ray microanalyses. J Neurochem 68:1920–1928

    Article  PubMed  CAS  Google Scholar 

  • Su G, Kintner DB, Flagella M, Shull GE, Sun D (2002) Astrocytes from Na(+)-K(+)-Cl(-) cotransporter-null mice exhibit absence of swelling and decrease in EAA release. Am J Physiol Cell Physiol 282:C1147–C1160

    Article  PubMed  CAS  Google Scholar 

  • Suarez-Roca H, Maixner W (1992) Delta-opioid-receptor activation by [D-Pen2, D-Pen5]enkephalin and morphine inhibits substance P release from trigeminal nucleus slices. Eur J Pharmacol 229:1–7

    Article  PubMed  CAS  Google Scholar 

  • Sugita S, North RA (1993) Opioid action on neurons of rat lateral amygdala in vitro. Brain Res 612:151–155

    Article  PubMed  CAS  Google Scholar 

  • Sussman IP, MacGregor LC, Masters BR, Matschinsky FM (1988) Quantitative histochemical determination of Na+ and K+ in microscopic samples using carbon furnace atomic absorption spectrometry. J Histochem Cytochem 36:237–244

    Article  PubMed  CAS  Google Scholar 

  • Sutor B, Hagerty T (2005) Involvement of gap junctions in the development of neocortex. Biochim Biophys Acta 1719:59–68

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Aoki T, Ohnishi O, Nagase H, Narita M (2000) Different effects of NMDA/group I metabotropic glutamate receptor agents in δ- and μ-opioid receptor agonist-induced supraspinal antinociception. Eur J Pharmacol 396:23–28

    Article  PubMed  CAS  Google Scholar 

  • Svingos AL, Cheng PY, Clarke CL, Pickel VM (1995) Ultrastructural localization of δ-opioid receptor and Met5-enkephalin immunoreactivity in rat insular cortex. Brain Res 700:25–39

    Article  PubMed  CAS  Google Scholar 

  • Svingos AL, Clarke CL, Pickel VM (1999) Localization of the δ-opioid receptor and dopamine transporter in the nucleus accumbens shell: implications for opiate and psychostimulant cross-sensitization. Synapse 34:1–10

    Article  PubMed  CAS  Google Scholar 

  • Svoboda K, Tank DW, Denk W (1996) Direct measurement of coupling between dendritic spines and shafts. Science 272:716–719

    Article  PubMed  CAS  Google Scholar 

  • Sweadner KJ (1989) Isozymes of the Na+/K+-ATPase. Biochim Biophys Acta 988:185–220

    Article  PubMed  CAS  Google Scholar 

  • Syková E (1983) Extracellular K+ accumulation in the central nervous system. Prog Biophys Mol Biol 42:135–189

    Article  PubMed  Google Scholar 

  • Syková E, Chvátal A (1993) Extracellulae ionic and volume changes: the role in glia-neuron interaction. J Chem Neuroanat 6:247–260

    Article  PubMed  Google Scholar 

  • Syková E, Orkand RK (1980) Extracellular potassium accumulation and transmission in frog spinal cord. Neuroscience 5:1421–1428

    Article  PubMed  Google Scholar 

  • Syková E, Rothenberg S, Krekule I (1974) Changes of extracellular potassium concentration during spontaneous activity in the mesencephalic reticular formation of the rat. Brain Res 79:333–337

    Article  PubMed  Google Scholar 

  • Takahashi A, Camacho P, Lechleiter JD, Herman B (1999) Measurement of intracellular calcium. Physiol Rev 79:1089–1125

    PubMed  CAS  Google Scholar 

  • Takahashi S, Driscoll BF, Law MJ, Sokoloff L (1995) Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. Proc Natl Acad Sci U S A 92:4616–4620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takumi T, Ishii T, Horio Y, Morishige K, Takahashi N, Yamada M, Yamashita T, Kiyama H, Sohmiya K, Nakanishi S, Kurachi Y (1995) A novel ATP-dependent inward rectifier potassium channel expressed predominantly in glial cells. J Biol Chem 270:16339–16346

    Article  PubMed  CAS  Google Scholar 

  • Talbot JD, David G, Barrett EF (2003) Inhibition of mitochondrial Ca2+ Ca2+ uptake affects phasic release from motor terminals differently depending on external [Ca2+]. J Neurophysiol 90:491–502

    Article  PubMed  CAS  Google Scholar 

  • Tanahashi S, Ueda Y, Nakajima A, Yamamura S, Nagase H, Okada M (2012) Novel δ1-receptor agonist KNT-127 increases the release of dopamine and L-glutamate in the striatum, nucleus accumbens and median pre-frontal cortex. Neuropharmacology 62:2057–2067

    Article  PubMed  CAS  Google Scholar 

  • Tanaka E, North RA (1994) Opioid actions on rat anterior cingulated cortex neurons in vitro. J Neurosci 14:1106–1113

    PubMed  CAS  Google Scholar 

  • Tang T, Kiang JG, Cox BM (1994) Opioids acting through delta receptors elicit a transient increase in the intracellular free calcium concentration in dorsal root ganglion-neuroblastoma hybrid ND8-47 cells. J Pharmacol Exp Ther 270:40–46

    PubMed  CAS  Google Scholar 

  • Tang T, Stevens BA, Cox BM (1996) Opioid regulation of intracellular free calcium in cultured mouse dorsal root ganglion neurons. J Neurosci Res 44:338–343

    Article  PubMed  CAS  Google Scholar 

  • Tang WJ, Gilman AG (1991) Type-specific regulation of adenylyl cyclase by G protein beta gamma subunits. Science 254:1500–1503

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Taniguchi K, Kofuji P (2009) Heterogeneity of Kir4.1 channel expression in glia revealed by mouse transgenesis. Glia 57:1706–1715

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarasov AI, Griffiths EJ, Rutter GA (2012) Regulation of ATP production by mitochondrial Ca(2+). Cell Calcium 52:28–35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tas PWL, Kassa PT, Kress HG, Koschel K (1987) Characterization of an Na+/K+/Cl− cotransport in primary cultures of rat astrocytes. Biochim Biophys Acta 903:411–416

    Article  PubMed  CAS  Google Scholar 

  • Taylor CP, Weber ML, Gaughan CL, Lehning EJ, LoPachin RM (1999) Oxygen/glucose deprivation in hippocampal slices: altered intraneuronal elemental composition predicts structural and functional damage. J Neurosci 19:619–629

    PubMed  CAS  Google Scholar 

  • Tecott LH, Maricq AV, Julius D (1993) Nervous system distribution of the serotonin 5-HT3 receptor mRNA. Proc Natl Acad Sci U S A 90:1430–1434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Therien AG, Blostein R (2000) Mechanisms of sodium regulation. Am J Physiol Cell Physiol 279:C541–C566

    PubMed  CAS  Google Scholar 

  • Thomas RC (1972) Intracellular sodium activity and the sodium pump in snail neurones. J Physiol 220:55–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas RC, Bers DM (2013) Calcium-sensitive mini- and microelectrodes. Cold Spring Harb Protoc 2013:305–309. doi:10.1101/pdb.top066290

    PubMed  Google Scholar 

  • Thorlin T, Eriksson PS, Hansson E, Ronnback L (1997) [D-Pen2,5]enkephalin and glutamate regulate the expression of delta-opioid receptors in rat cortical astrocytes. Neurosci Lett 232:67–70

    Article  PubMed  CAS  Google Scholar 

  • Thorlin T, Eriksson PS, Persson PAI, Åberg ND, Hansson E, Rőnnbäck L (1998a) Delta-opioid receptors on astroglial cells in primary culture: mobilization of intracellular free calcium via a pertussis sensitive G protein. Neuropharmacology 37:299–311

    Article  PubMed  CAS  Google Scholar 

  • Thorlin T, Roginski RS, Choudhury K, Nilsson M, Ronnback L, Hansson E, Eriksson PS (1998b) Regulation of the glial glutamate transporter GLT-1 by glutamate and delta-opioid receptor stimulation. FEBS Lett 425:453–459

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toselli M, Tosetti P, Taglietti V (1997) μ and δ opioid receptor activation inhibits ω-conotoxin-sensitive calcium channels in a voltage- and time-dependent mode in the human neuroblastoma cell line SH-SY5Y. Pflugers Arch 433:587–596

    Article  PubMed  CAS  Google Scholar 

  • Toselli M, Tosetti P, Taglietti V (1999) Kinetic study of N-type calcium current modulation by δ-opioid receptor activation in the mammalian cell line NG108-15. Biophys J 76:2560–2574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toyoshima C (2008) Structural aspects of ion pumping by Ca2+-ATPase of sarcoplasmic reticulum. Arch Biochem Biophys 476:3–11

    Article  PubMed  CAS  Google Scholar 

  • Tsai MF, Jiang D, Zhao L, Clapham D, Miller C (2014) Functional reconstitution of the mitochondrial Ca2+/H+ antiporter Letm1. J Gen Physiol 143:67–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsang CW, Elrick DB, Charlton MP (2000) α-Latrotoxin releases calcium in from motor nerve terminals. J Neurosci 20:8685–8692

    PubMed  CAS  Google Scholar 

  • Tsao JW, Paramananthan N, Parkes HG, Dunn JF (1999a) Altered brain metabolism in the C57BL/Wld mouse strain detected by magnetic resonance spectroscopy: association with delayed Wallerian degeneration? J Neurol Sci 168:1–12

    Article  PubMed  CAS  Google Scholar 

  • Tsao L-I, Cadet JL, Su T-P (1999b) Reversal by peptide [D-Ala2, D-Leu5]enkephalin of the dopamine transporter loss caused by methamphetamine. Eur J Pharmacol 372:R5–R7

    Article  PubMed  CAS  Google Scholar 

  • Tsao LI, Ladenheim B, Andrews AM, Chiueh CC, Cadet JL, Su TP (1998) Delta opioid peptide [D-Ala2, D-Leu5]enkephalin blocks the long-term loss of dopamine transporters induced by multiple administration of methamphetamine: involvement of opioid receptors and reactive oxygen species. J Pharmacol Exp Ther 287:322–331

    PubMed  CAS  Google Scholar 

  • Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: Design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290:527–528

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY (1983) Intracellular measurement of ion activities. Annu Rev Biophys Bioeng 12:91–116

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY, Pozzan T, Rink TJ (1982) Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new intracellularly trapped fluorescent indicator. J Cell Biol 94:325–334

    Article  PubMed  CAS  Google Scholar 

  • Tsubokawa H, Miura M, Kano M (1999) Elevation of intracellular Na+ induced by hyperpolarization at the dendrites of pyramidal neurons of mouse hippocampus. J Physiol 517:135–142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tu H, Nelson O, Bezprozvanny A, Wang Z, Lee SF, Hao YH, Serneels L, De Strooper B, Yu G, Bezprozvanny I (2006) Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell 126:981–993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuusa JT, Leskelä TT, Petäjä-Repo UE (2010) Human delta opioid receptor biogenesis is regulated via interactions with SERCA2b and calnexin. FEBS J 277:2815–2829

    Article  PubMed  CAS  Google Scholar 

  • Tuusa JT, Petäjä-Repo UE (2011) Phe27Cys polymorphism of the human delta opioid receptor predisposes cells to compromised calcium signaling. Mol Cell Biochem 351:173–181

    Article  PubMed  CAS  Google Scholar 

  • Ueda M, Sugimoto K, Oyama T, Kuraishi Y, Satoh M (1995) Opioidergic inhibition of capsaicin-evoked release of glutamate from rat spinal dorsal horn slices. Neuropharmacology 34:303–308

    Article  PubMed  CAS  Google Scholar 

  • Uhlmann EJ, Wong M, Baldwin RL, Bajenaru ML, Onda H, Kwiatkowski DJ, Yamada KA, Gutmann DH (2002) Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 52:285–296

    Article  PubMed  CAS  Google Scholar 

  • Unichenko P, Myakhar O, Kirischuk S (2012) Intracellular Na+ concentration influences short-term plasticity of glutamate transporter-mediated currents in neocortical astrocytes. Glia 60:605–614

    Article  PubMed  Google Scholar 

  • Vaillend C, Mason SE, Cuttle MF, Alger BE (2002) Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+-ATPase in the rat CA1 hippocampal region. J Neurophysiol 88:2963–2978

    Article  PubMed  CAS  Google Scholar 

  • van Rijn RM, Defriel JN, Whistler JL (2013) Pharmacological traits of delta opioid receptors: pitfalls or opportunities? Psychopharmacology (Berl) 228:1–18

    Article  CAS  Google Scholar 

  • Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141

    PubMed  CAS  Google Scholar 

  • Verkhratsky A, Parpura V (2014) Store-operated calcium entry in neuroglia. Neurosci Bull 30:125–133

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky A, Rodríguez JJ, Parpura V (2012) Calcium signalling in astroglia. Mol Cell Endocrinol 353:45–56

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky A, Steinhäuser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32:380–412

    Article  PubMed  CAS  Google Scholar 

  • Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ (2005) Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47:365–378

    Article  PubMed  CAS  Google Scholar 

  • Vlaskovska M, Schramm M, Nylander I, Kasakov L, You ZB, Herrera-Marschitz M, Terenius L (1997) Opioid effects on 45Ca2+ uptake and glutamate release in rat cerebral cortex in primary culture. J Neurochem 68:517–524

    Article  PubMed  CAS  Google Scholar 

  • Vodovotz Y, An G, Androulakis IP (2013) A systems engineering perspective on homeostasis and disease. Front Bioeng Biotechnol 1:6. doi:10.3389/fbioe.2013.00006

    Article  PubMed  PubMed Central  Google Scholar 

  • Voipio J, Pasternack M, MacLeod K (1994) Ion-sensitive microelectrodes. In: Ogden D (ed) Microelectrode techniques, the Plymouth workshop handbook, 2nd edn. The Company of Biologists, Cambridge, pp 275–316

    Google Scholar 

  • Volterra A, Liaudet N, Savtchouk I (2014) Astrocyte Ca2+ signaling: an unexpected complexity. Nat Neurosci 15:327–335

    Article  CAS  Google Scholar 

  • von Bohlen Und Halbach O (2009) Structure and function of dendritic spines within the hippocampus. Ann Anat 191:518–531

    Article  CAS  Google Scholar 

  • Voutsinos-Porche B, Bonvento G, Tanaka K, Steiner P, Welker E, Chatton JY, Magistretti P, Pellerin L (2003) Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron 37:275–286

    Article  PubMed  CAS  Google Scholar 

  • Vyklicky L, Sykova E, Kriz N, Ujec E (1972) Post-stimulation changes of extracellular potassium concentration in the spinal cord of the rat. Brain Res 45:608–611

    Article  PubMed  CAS  Google Scholar 

  • Vyskočil F, Kritz N, Bures J (1972) Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res 39:255–259

    Article  PubMed  Google Scholar 

  • Walker JL (1971) Ion specific liquid ion exchanger microelectrodes. Anal Chem 43:89A–92A

    Article  CAS  Google Scholar 

  • Wallraff A, Köhling R, Heinemann U, Theis M, Willecke K, Steinhäuser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26:5438–5447

    Article  PubMed  CAS  Google Scholar 

  • Walwyn W, John S, Maga M, Evans CJ, Hales TG (2009) δ receptors are required for full inhibitory coupling of μ receptors to voltage-dependent Ca2+ channels in dorsal root ganglion neurons. Mol Pharmacol 76:134–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walwyn W, Maidment NT, Sanders M, Evans CJ, Kieffer BL, Hales TG (2005) Induction of δ opioid receptor function by up-regulation of membrane receptors in mouse primary afferent neurons. Mol Pharmacol 68:1688–1698

    PubMed  CAS  Google Scholar 

  • Walz W (1992) Mechanism of rapid K+-induced swelling of mouse astrocytes. Neurosci Lett 135:243–246

    Article  PubMed  CAS  Google Scholar 

  • Walz W (2000) Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int 36:291–300

    Article  PubMed  CAS  Google Scholar 

  • Walz W (ed) (2002) The neuronal environment: brain homeostasis in health and disease. Humana, Totowa

    Google Scholar 

  • Wang XM, Mokha SS (1996) Opioids modulate N-methyl-D-aspartic acid (NMDA)-evoked responses of trigeminothalamic neurons. J Neurophysiol 76:2093–2096

    PubMed  CAS  Google Scholar 

  • Walz W, Hinks EC (1986) A transmembrane sodium cycle in astrocytes. Brain Res 368:226–232

    Article  PubMed  CAS  Google Scholar 

  • Wang HB, Zhao B, Zhong YQ, Li KC, Li ZY, Wang Q, Lu YJ, Zhang ZN, He SQ, Zheng HC, Wu SX, Hökfelt TG, Bao L, Zhang X (2010) Coexpression of delta- and mu-opioid receptors in nociceptive sensory neurons. Proc Natl Acad Sci U S A 107:13117–13122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang JB, Imai Y, Eppler CM, Gregor P, Spivak CE, Uhl GR (1993a) mu opiate receptor: cDNA cloning and expression. Proc Natl Acad Sci U S A 90:10230–10234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang JF, Shun XJ, Yang HF, Ren MF, Han JS (1993b) Suppression by [D-Pen2, D-Pen5]encephalin on cyclic AMP dependent protein kinase-induced, but not protein kinase C-induced increment of intracellular free calcium in NG108-15 cells. Life Sci 52:1519–1525

    Article  PubMed  CAS  Google Scholar 

  • Watson GB, Lanthorn TH (1993) Electrophysiological actions of delta opioids in CA1 of the rat hippocampal slices are mediated by one delta receptor subtype. Brain Res 601:129–135

    Article  PubMed  CAS  Google Scholar 

  • Weber JT (2004) Calcium homeostasis following traumatic neuronal injury. Curr Neurovasc Res 1:151–171

    Article  PubMed  Google Scholar 

  • Wild KD, Vanderah T, Mosberg HI, Porreca F (1991) Opioid δ receptor subtypes are associated with different potassium channels. Eur J Pharmacol 193:135–136

    Article  PubMed  CAS  Google Scholar 

  • Witkowski G, Szulczyk P (2006) Opioid μ receptor activation inhibits sodium currents in prefrontal cortical neurons via a protein kinase A- and C-dependent mechanism. Brain Res 1094:92–106

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Xia S, Lin J, Cao D, Chen W, Liu L, Fu Y, Liang J, Cao M (2013) Effects of the altered activity of δ-opioid receptor on the expression of glutamate transporter type 3 induced by chronic exposure to morphine. J Neurol Sci 335:174–181

    Article  PubMed  CAS  Google Scholar 

  • Wu Z-Z, Chen S-R, Pan H-L (2008) Distinct inhibition of voltage-activated Ca2+ channels by δ-opioid agonists in dorsal root ganglion neurons devoid of functional T-type Ca2+ currents. Neuroscience 153:1256–1267

    Article  PubMed  CAS  Google Scholar 

  • Xi ZX, Akasu T (1997) Opioid peptides modulate GABAA receptor responses in neurons of bullfrog dorsal root ganglia. Brain Res 758:163–168

    Article  PubMed  CAS  Google Scholar 

  • Xia P, Pei G, Schwarz W (2006) Regulation of the glutamate transporter EAAC1 by expression and activation of δ-opioid receptor. Eur J Neurosci 24:87–93

    Article  PubMed  CAS  Google Scholar 

  • Xia Y, Haddad GG (1991) Ontogeny and distribution of opioid receptors in the rat brainstem. Brain Res 549:181–193

    Article  PubMed  CAS  Google Scholar 

  • Xia Y, Haddad GG (2001) Major difference in the expression of delta- and mu-opioid receptors between turtle and rat brain. J Comp Neurol 436:202–210

    Article  PubMed  CAS  Google Scholar 

  • Xia Y, Zhao P, Xue J, Gu XQ, Sun X, Yao H, Haddad GG (2003) Na+ channel expression and neuronal function in the Na+/H+ exchanger 1 null mutant mouse. J Neurophysiol 89:229–236

    Article  PubMed  CAS  Google Scholar 

  • Xiao AY, Homma M, Wang XQ, Wang X, Yu SP (2001) Role of K+ efflux in apoptosis induced by AMPA and kainite in mouse cortical neurons. Neuroscience 108:61–67

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Dengler K, Zacharias E, Wilffert B, Tegtmeier F (1994) Effects of the sodium channel blocker tetrodotoxin (TTX) on cellular ion homeostasis in rat brain subjected to complete ischemia. Brain Res 652:216–224

    Article  PubMed  CAS  Google Scholar 

  • Xiong ZQ, Stringer JL (2000) Sodium pump activity, not glial spatial buffering, clears potassium after epileptiform activity induced in the dentate gyrus. J Neurophysiol 83:1443–1451

    PubMed  CAS  Google Scholar 

  • Xu L, Zeng LH, Wong M (2009) Impaired astrocytic gap junction coupling and potassium buffering in a mouse model of tuberous sclerosis complex. Neurobiol Dis 34:291–299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yajima Y, Narita M, Takahashi-Nakano Y, Misawa M, Nagase H, Mizoguchi H, Tseng LF, Suzuki T (2000) Effects of differential modulation of mu-, delta- and kappa-opioid systems on bicuculline-induced convulsions in the mouse. Brain Res 862:120–126

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Inanobe A, Kurachi Y (1998) G protein regulation of potassium ion channels. Pharmacol Rev 50:723–760

    PubMed  CAS  Google Scholar 

  • Yamazaki M, Mizoguchi H, Ohsawa M, Tseng LF, Suzuki T, Narita M (2000) Implications of Ca2+-activated Cl− channels in the δ-opioid receptor-mediated antinociception in the mouse spinal cord. Neurosci Lett 295:113–115

    Article  PubMed  CAS  Google Scholar 

  • Yang F, He X, Russell J, Lu B (2003) Ca2+ influx-independent synaptic potentiation mediated by mitochondrial Na+-Ca2+ exchanger and protein kinase C. J Cell Biol 163:511–523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang TT, Hung CF, Lee YJ, Su MJ, Wang SJ (2004) Morphine inhibits glutamate exocytosis from rat cerebral cortex nerve terminals (synaptosomes) by reducing Ca2+ influx. Synapse 51:83–90

    Article  PubMed  CAS  Google Scholar 

  • Yasuda R, Sabatini BL, Svoboda K (2003) Plasticity of calcium channels in dendritic spines. Nat Neurosci 9:948–955

    Article  CAS  Google Scholar 

  • Yeung LC, Shouval HZ, Blais BS, Cooper LN (2004) Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. Proc Natl Acad Sci U S A 101:14943–14948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoo JH, Bailey A, Ansonoff M, Pintar JE, Matifas A, Kieffer BL, Kitchen I (2010) Lack of genotype effect on D1, D2 receptors and dopamine transporter binding in triple MOP-, DOP-, and KOP-opioid receptor knockout mice of three different genetic backgrounds. Synapse 64:520–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon SH, Jin W, Spencer RJ, Loh HH, Thayer SA (1998) Desensitization of δ-opioid-induced mobilization of Ca2+ stores in NG108-15 cells. Brain Res 802:9–18

    Article  PubMed  CAS  Google Scholar 

  • Yoon SH, Lo T-M, Loh HH, Thayer SA (1999) δ-Opioid-induced liberation of Gβγ mobilizes Ca2+ stores in NG108-15 cells. Mol Pharmacol 56:902–908

    PubMed  CAS  Google Scholar 

  • Yoshii M, Furukawa T, Ogihara Y, Watabe S, Shiotani T, Ishikawa Y, Nishimura M, Nukada T (2004) Negative regulation of opioid receptor-G protein-Ca2+ channel pathway by the nootropic nefiracetam. Ann N Y Acad Sci 1025:389–397

    Article  PubMed  CAS  Google Scholar 

  • Young KW, Bampton ETW, Pinòn L, Bano D, Nicotera P (2008) Mitochondrial Ca2+ signaling in hippocampal neurons. Cell Calcium 43:296–306

    Article  PubMed  CAS  Google Scholar 

  • Yu SP (2003) Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 70:363–386

    Article  PubMed  CAS  Google Scholar 

  • Yu SP, Yeh C-H, Strasser U, Tian M, Choi DW (1999) NMDA receptor-mediated K+ efflux and neuronal apoptosis. Science 284:336–339

    Article  PubMed  CAS  Google Scholar 

  • Yu VC, Richards ML, Sadée W (1986) A human neuroblastoma cell line expresses mu and delta opioid receptor sites. J Biol Chem 261:1065–1070

    PubMed  CAS  Google Scholar 

  • Yu XM, Salter MW (1998) Gain control of NMDA-receptor currents by intracellular sodium. Nature 396:469–474

    Article  PubMed  CAS  Google Scholar 

  • Yuste R, Majewska A, Holthoff K (2000) From form to function: calcium compartmentalization in dendritic spines. Nat Neurosci 3:653–659

    Article  PubMed  CAS  Google Scholar 

  • Yuzaki M, Forrest D, Verselis LM, Sun SC, Curran T, Connor JA (1996) Functional NMDA receptors are transiently active and support the survival of Purkinje cells in culture. J Neurosci 16:4651–4661

    PubMed  CAS  Google Scholar 

  • Zachariou V, Goldstein BD (1996) Delta-opioid receptor modulation of the release of substance P-like immunoreactivity in the dorsal horn of the rat following mechanical or thermal noxious stimulation. Brain Res 736:305–314

    Article  PubMed  CAS  Google Scholar 

  • Zanotto L, Heinemann U (1983) Aspartate and glutamate induced reductions in extracellular free calcium and sodium concentration in area CA1 of ‘in vitro’ hippocampal slices of rats. Neurosci Lett 35:79–84

    Article  PubMed  CAS  Google Scholar 

  • Zeng X, Zhao X, Yang Y, Kuai J, Cao C, Yu D, Zhao H, Chai W, Yao L (2011) Opioid δ1 and δ2 receptor agonist attenuate myocardial injury via mPTP in rats with acute hemorrhagic shock. J Surg Res 169:267–276

    Article  PubMed  CAS  Google Scholar 

  • Zetterström TSC, Vaughan-Jones RD, Grahame-Smith DG (1995) A short period of hypoxia produces a rapid and transient rise in [K+]e in rat hippocampus in vivo which is inhibited by certain K+-channel blocking agents. Neuroscience 67:815–821

    Article  PubMed  Google Scholar 

  • Zhang J, Gibney GT, Zhao P, Xia Y (2002) Neuroprotective role of delta-opioid receptors in cortical neurons. Am J Physiol Cell Physiol 282:C1225–C1234

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Haddad GG, Xia Y (2000) Delta-, but not mu- and kappa-, opioid receptor activation protects neocortical neurons from glutamate-induced excitotoxic injury. Brain Res 885:143–153

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Qian H, Zhao P, Hong SS, Xia Y (2006) Rapid hypoxia preconditioning protects cortical neurons from glutamate toxicity through δ-opioid receptor. Stroke 37:1094–1099

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Pan ZZ (2012) Signaling cascades for δ-opioid receptor-mediated inhibition of GABA synaptic transmission and behavioral antinociception. Mol Pharmacol 81:375–383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao M, Joo DT (2008) Enhancement of spinal N-methyl-D-aspartate receptor function by remifentanil action at α-opioid receptors as a mechanism for acute opioid-induced hyperalgesia or tolerance. Anesthesiology 109:308–317

    Article  PubMed  CAS  Google Scholar 

  • Zhao P, Ma MC, Qian H, Xia Y (2005) Down-regulation of delta-opioid receptors in Na+/H+ exchanger 1 null mutant mouse brain with epilepsy. Neurosci Res 53:442–446

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T, Campbell RE (2011) An expanded palette of genetically encoded Ca2+ indicators. Science 333:1888–1891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong N, Beaumont V, Zucker RS (2001) Role for mitochondrial and reverse model Na+/Ca2+ exchange and the plasmalemma Ca2+ ATPase in post-tetanic potentiation at crayfish neuromuscular junctions. J Neurosci 21:9598–9607

    PubMed  CAS  Google Scholar 

  • Zieglgänsberger W, French ED, Siggins GR, Bloom FE (1979) Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons. Science 205:415–417

    Article  PubMed  Google Scholar 

  • Zilberter Y, Zilberter T, Bregestovski P (2010) Neuronal activity in vitro and the in vivo reality: the role of energy homeostasis. Trends Pharmacol Sci 31:394–401

    Article  PubMed  CAS  Google Scholar 

  • Zorec R, Araque A, Carmignoto G, Haydon PG, Verkhratsky A, Parpura V (2012) Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN Neuro 4(2), e00080. doi:10.1042/AN20110061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zündorf G, Reiser G (2011) Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple tragets for neuroprotection. Antioxid Redox Signal 14:1275–1288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH (AT-004422, and HD-034852) and Vivian L Smith Neurologic Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Xia M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chao, D., Xia, Y. (2015). The Role of δ-Opioid Receptors in Brain Ionic Homeostasis Under Physiological Condition. In: Xia, Y. (eds) Neural Functions of the Delta-Opioid Receptor. Springer, Cham. https://doi.org/10.1007/978-3-319-25495-1_5

Download citation

Publish with us

Policies and ethics