Skip to main content

Advertisement

Log in

Neuroprotection against hypoxia/ischemia: δ-opioid receptor-mediated cellular/molecular events

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Hypoxic/ischemic injury remains the most dreaded cause of neurological disability and mortality. Despite the humbling experiences due to lack of promising therapy, our understanding of the complex cascades underlying the neuronal insult has led to advances in basic science research. One of the most noteworthy has been the effect of opioid receptors, especially the delta-opioid receptor (DOR), on hypoxic/ischemic neurons. Our recent studies, and those of others worldwide, present strong evidence that sheds light on DOR-mediated neuroprotection in the brain, especially in the cortex. The mechanisms of DOR neuroprotection are broadly categorized as: (1) stabilization of the ionic homeostasis, (2) inhibition of excitatory transmitter release, (3) attenuation of disrupted neuronal transmission, (4) increase in antioxidant capacity, (5) regulation of intracellular pathways—inhibition of apoptotic signals and activation of pro-survival signaling, (6) regulation of specific gene and protein expression, and (7) up-regulation of endogenous opioid release and/or DOR expression. Depending upon the severity and duration of hypoxic/ischemic insult, the release of endogenous opioids and DOR expression are regulated in response to the stress, and DOR signaling acts at multiple levels to confer neuronal tolerance to harmful insult. The phenomenon of DOR neuroprotection offers a potential clue for a promising target that may have significant clinical implications in our quest for neurotherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hertz L (2008) Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology 55:289–309

    Article  PubMed  CAS  Google Scholar 

  2. Yamagata K (2012) Pathological alterations of astrocytes in stroke-prone spontaneously hypertensive rats under ischemic conditions. Neurochem Int 60:91–98

    Article  PubMed  CAS  Google Scholar 

  3. Kahle KT, Simard JM, Staley KJ, Nahed BV, Jones PS, Sun D (2009) Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiology 24:257–265

    Article  PubMed  CAS  Google Scholar 

  4. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J (2010) Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation 121:e46–e215

    Article  PubMed  Google Scholar 

  5. Stankowski JN, Gupta R (2011) Therapeutic targets for neuroprotection in acute ischemic stroke: lost in translation? Antioxid Redox Signal 14:1841–1851

    Article  PubMed  CAS  Google Scholar 

  6. Diarra A, Sheldon C, Brett CL, Baimbridge KG, Church J (1999) Anoxia-evoked intracellular pH and Ca2+ concentration changes in cultured postnatal rat hippocampal neurons. Neuroscience 93:1003–1016

    Article  PubMed  CAS  Google Scholar 

  7. Bickler PE (2004) Clinical perspectives: neuroprotection lessons from hypoxia-tolerant organisms. J Exp Biol 207:3243–3249

    Article  PubMed  CAS  Google Scholar 

  8. Banasiak KJ, Burenkova O, Haddad GG (2004) Activation of voltage-sensitive sodium channels during oxygen deprivation leads to apoptotic neuronal death. Neuroscience 126:31–44

    Article  PubMed  CAS  Google Scholar 

  9. Cho SI, Park UJ, Chung J-M, Gwag BJ (2010) Neu 2000, an NR2B-selective, moderate NMDA receptor antagonist and potent spin trapping molecule for stroke. Drug News Perspect 23:549–556

    Article  PubMed  CAS  Google Scholar 

  10. Sung J-H, Chao D, Xia Y (2008) Neuronal responses to hypoxia. New frontiers in neurological research. Res Signpost 37:73–153

    Google Scholar 

  11. Busl KM, Greer DM (2010) Hypoxic-ischemic brain injury: pathophysiology, neuropathology and mechanisms. NeuroRehabilitation 26:5–13

    PubMed  Google Scholar 

  12. Moskowitz MA, Lo EH, Ladecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198

    Article  PubMed  CAS  Google Scholar 

  13. Liman TG, Endres M (2012) New vessels after stroke: postischemic neovascularization and regeneration. Cerebrovasc Dis 33:492–499

    Article  PubMed  CAS  Google Scholar 

  14. Honig LS, Rosenberg RN (2000) Apoptosis and neurologic disease. Am J Med 108:317–330

    Article  PubMed  CAS  Google Scholar 

  15. Lo EH (2008) A new penumbra: transitioning from injury into repair after stroke. Nat Med 14:497–500

    Article  PubMed  CAS  Google Scholar 

  16. Schaller B, Graf R (2004) Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J Cereb Blood Flow Metab 24:351–371

    Article  PubMed  Google Scholar 

  17. Benowitz LI, Carmichael ST (2010) Promoting axonal rewiring to improve outcome after stroke. Neurobiol Dis 37:259–266

    Article  PubMed  Google Scholar 

  18. Zhang JJ, Haddad GG, Xia Y (2000) Delta, but not mu and kappa, opioid receptor activation protects neocortical neurons from glutamate-induced excitotoxic injury. Brain Res 885:143–153

    Article  PubMed  CAS  Google Scholar 

  19. Bickler PE (1998) Reduction of NMDA receptor activity in cerebrocortex of turtles (Chrysemys picta) during 6 week of anoxia. Am J Physiol 275:R86–R91

    PubMed  CAS  Google Scholar 

  20. Guo W-P, Fu X-G, Jiang S-M, Wu J-Z (2010) Neuregulin-1 regulates the expression of Akt, Bcl-2, and Bad signaling after focal cerebral ischemia in rats. Biochem Cell Biol 88:649–654

    Article  PubMed  CAS  Google Scholar 

  21. Azarashvili T, Baburina Y, Grachev D, Krestinina O, Evtodienko Y, Stricker R, Reiser G (2011) Calcium-induced permeability transition in rat brain mitochondria is promoted by carbenoxolone through targeting connexin43. Am J Physiol Cell Physiol 300:C707–C720

    Article  PubMed  CAS  Google Scholar 

  22. Boltze J, Kranz A, Wagner D-C, Reymann K, Reiser G, Hess DC (2011) Recent advances in basic and translational stroke research. Expert Rev Neurother 11:199–202

    Article  PubMed  Google Scholar 

  23. Chamorro A, Román GC (2011) Proceedings of recent developments and future directions in stroke management and prevention symposium: preface. Stroke 42:S1–S2

    Article  PubMed  Google Scholar 

  24. Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, Vivien D, Mauff BL (2011) Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 10:471–480

    Article  PubMed  CAS  Google Scholar 

  25. Fisher M (2011) New approaches to neuroprotective drug development. Stroke 42:S24–S27

    Article  PubMed  Google Scholar 

  26. Molina CA (2011) Reperfusion therapies for acute ischemic stroke: current pharmacological and mechanical approaches. Stroke 42:S16–S19

    Article  PubMed  Google Scholar 

  27. Planas AM, Traystman RJ (2011) Advances in translational medicine 2010. Stroke 42:283–284

    Article  PubMed  Google Scholar 

  28. Piao C-S, Gonzalez-Toledo ME, Xue Y-Q, Duan W-M, Terao S, Granger DN, Kelley RE, Zhao L-R (2009) The role of stem cell factor and granulocyte-colony stimulating factor in brain repair during chronic stroke. J Cereb Blood Flow Metab 29:759–770

    Article  PubMed  CAS  Google Scholar 

  29. Ginsberg MD (2009) Current status of neuroprotection for cerebral ischemia synoptic overview. Stroke 40:S111–S114

    Article  PubMed  Google Scholar 

  30. Young AR, Ali C, Duretête A, Vivien D, Durete A (2007) Neuroprotection and stroke: time for a compromise. J Neurochem 103:1302–1309

    Article  PubMed  CAS  Google Scholar 

  31. Thauerer B, Nedden zur S, Baier-Bitterlich G, Zur Nedden S (2012) Hypoxia in brain purine nucleosides in hypoxia. J Neurochem 121:329–342

    Article  PubMed  CAS  Google Scholar 

  32. Brownstein MJ (1993) A brief history of opiates, opioid peptides, and opioid receptors. Proc Natl Acad Sci USA 90:5391–5393

    Article  PubMed  CAS  Google Scholar 

  33. Martin WR (1967) Opioid antagonists. Pharmacol Rev 19:463–521

    PubMed  CAS  Google Scholar 

  34. Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–580

    Article  PubMed  CAS  Google Scholar 

  35. Pert A, Yaksh T (1975) Localization of the antinociceptive action of morphine in primate brain. Pharmacol Biochem Behav 3:133–138

    Article  PubMed  CAS  Google Scholar 

  36. Snyder SH, Matthysse S (1975) Opiate receptor mechanisms. Neurosci Res Program Bull 13:1–166

    CAS  Google Scholar 

  37. Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine and nalorphine like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    PubMed  CAS  Google Scholar 

  38. Xia Y, Haddad GG (1991) Ontogeny and distribution of opioid receptors in the rat brainstem. Brain Res 549:181–193

    Article  PubMed  CAS  Google Scholar 

  39. Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y (2012) Current research on opioid receptor function. Curr Drug Targets 13:230–246

    Article  PubMed  CAS  Google Scholar 

  40. Xia Y, Haddad GG (2001) Major difference in the expression of delta and mu-opioid receptors between turtle and rat brain. J Comp Neurol 436:202–210

    Article  PubMed  CAS  Google Scholar 

  41. Hiller JM, Fan LQ (1996) Laminar distribution of the multiple opioid receptors in the human cerebral cortex. Neurochem Res 21:1333–1345

    Article  PubMed  CAS  Google Scholar 

  42. Xia Y, Cao H, Zhang J, Chen N, Siegel K, Agulnik M, Haddad G (2001) Effect of δ-opioid receptor activation on Na+ channel expression in cortical neurons subjected to prolonged hypoxia in culture. Society for neuroscience online: SfN Abstract, program no. 740.6

  43. Chao D, Xia Y (2010) Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol 90:439–470

    Article  PubMed  CAS  Google Scholar 

  44. Feng Y, He X, Yang Y, Chen J, Yin K, Xia Y (2011) Effect of delta-opioid receptor over-expression on cortical expression of GABAA receptor alpha1-subunit in hypoxia. Chin J Physiol 54:118–123

    PubMed  CAS  Google Scholar 

  45. Audet N, Galés C, Archer-Lahlou E, Vallières M, Schiller PW, Bouvier M, Pineyro G (2008) Bioluminescence resonance energy transfer assays reveal ligand-specific conformational changes within preformed signaling complexes containing delta-opioid receptors and heterotrimeric G proteins. J Biol Chem 283:15078–15088

    Article  PubMed  CAS  Google Scholar 

  46. Ballet S, Pietsch M, Abell AD (2008) Multiple ligands in opioid research. Protein Pept Lett 15:668–682

    Article  PubMed  CAS  Google Scholar 

  47. Barry U, Zuo Z (2005) Opioids: old drugs for potential new applications. Curr Pharm Des 11:1343–1350

    Article  PubMed  CAS  Google Scholar 

  48. Law PY, Loh HH (1999) Regulation of opioid receptor activities. J Pharmacol Exp Ther 289:607–624

    PubMed  CAS  Google Scholar 

  49. Pasternak GW (2004) Multiple opiate receptors: déjà vu all over again. Neuropharmacology 47(Suppl 1):312–323

    Article  PubMed  CAS  Google Scholar 

  50. Waldhoer M, Bartlett SE, Whistler JL (2004) Opioid receptors. Annu Rev Biochem 73:953–990

    Article  PubMed  CAS  Google Scholar 

  51. Lim YJ, Zheng S, Zuo Z (2004) Morphine preconditions Purkinje cells against cell death under in vitro simulated ischemia-reperfusion conditions. Anesthesiology 100:562–568

    Article  PubMed  CAS  Google Scholar 

  52. Johnson SM, Turner SMF (2010) Protecting motor networks during perinatal ischemia: the case for delta-opioid receptors. Ann N Y Acad Sci 1198:260–270

    Article  PubMed  CAS  Google Scholar 

  53. Ammon-Treiber S, Stolze D, Schröder H, Loh H, Höllt V (2005) Effects of opioid antagonists and morphine in a hippocampal hypoxia/hypoglycemia model. Neuropharmacology 49:1160–1169

    Article  PubMed  CAS  Google Scholar 

  54. Zhang J, Qian H, Zhao P, Hong S–S, Xia Y (2006) Rapid hypoxia preconditioning protects cortical neurons from glutamate toxicity through delta-opioid receptor. Stroke 37:1094–1099

    Article  PubMed  CAS  Google Scholar 

  55. Armstead WM (1995) Opioids and nitric oxide contribute to hypoxia-induced pial arterial vasodilation in newborn pigs. Am J Physiol 268:H226–H232

    PubMed  CAS  Google Scholar 

  56. Wilderman MJ, Armstead WM (1996) Relationship between nitric oxide and opioids in hypoxia-induced pial artery vasodilation. Am J Physiol 270:H869–H874

    PubMed  CAS  Google Scholar 

  57. Mayfield KP, Kozak W, Malvin GM, Porreca F (1996) Hypoxia decreases opioid delta receptor expression in mouse brain. Neuroscience 72:785–789

    Article  PubMed  CAS  Google Scholar 

  58. Endoh H, Taga K, Yamakura T, Sato K, Watanabe I, Fukuda S, Shimoji K (1999) Effects of naloxone and morphine on acute hypoxic survival in mice. Crit Care Med 27:1929–1933

    Article  PubMed  CAS  Google Scholar 

  59. Hayward NJ, McKnight AT, Woodruff GN (1993) Neuroprotective effect of the kappa-agonist enadoline (CI-977) in rat models of focal cerebral ischaemia. Eur J Neurosci 5:961–967

    Article  PubMed  CAS  Google Scholar 

  60. Mayfield KP, D’Alecy LG (1994) Delta-1 opioid agonist acutely increases hypoxic tolerance. J Pharmacol Exp Ther 268:683–688

    PubMed  CAS  Google Scholar 

  61. Summers RL, Li Z, Hildebrandt D (2003) Effect of a delta receptor agonist on duration of survival during hemorrhagic shock. Acad Emerg Med 10:587–593

    PubMed  Google Scholar 

  62. Adams HP, Olinger CP, Barsan WG, Butler MJ, Graff-Radford NR, Brott TG, Biller J, Damasio H, Tomsick T, Goldberg M (1986) A dose-escalation study of large doses of naloxone for treatment of patients with acute cerebral ischemia. Stroke 17:404–409

    Article  PubMed  Google Scholar 

  63. Olinger CP, Adams HP, Brott TG, Biller J, Barsan WG, Toffol GJ, Eberle RW, Marler JR (1990) High-dose intravenous naloxone for the treatment of acute ischemic stroke. Stroke 21:721–725

    Article  PubMed  CAS  Google Scholar 

  64. Chen CJ, Liao SL, Chen WY, Hong JS, Kuo JS (2001) Cerebral ischemia/reperfusion injury in rat brain: effects of naloxone. NeuroReport 12:1245–1249

    Article  PubMed  CAS  Google Scholar 

  65. Hosobuchi Y, Baskin DS, Woo SK (1982) Reversal of induced ischemic neurologic deficit in gerbils by the opiate antagonist naloxone. Science 215:69–71

    Article  PubMed  CAS  Google Scholar 

  66. Chen CJ, Cheng FC, Liao SL, Chen WY, Lin NN, Kuo JS (2000) Effects of naloxone on lactate, pyruvate metabolism and antioxidant enzyme activity in rat cerebral ischemia/reperfusion. Neurosci Lett 287:113–116

    Article  PubMed  CAS  Google Scholar 

  67. Skarphedinsson JO, Thorén P (1988) Endorphin mechanisms are responsible for the beneficial effects of opioid antagonists on cerebral function during relative cerebral ischaemia in rats. Acta Physiol Scand 132:281–288

    Article  PubMed  CAS  Google Scholar 

  68. Iwai T, Niwa M, Nakashima M, Kambara T, Yamada H, Tsurumi K, Nozaki M (1992) Effect of opioids on delayed neuronal death in the gerbil hippocampus. Life Sci 50:PL239–PL244

    Article  PubMed  CAS  Google Scholar 

  69. Choi DW, Viseskul V (1988) Opioids and non-opioid enantiomers selectively attenuate N-methyl-d-aspartate neurotoxicity on cortical neurons. Eur J Pharmacol 155:27–35

    Article  PubMed  CAS  Google Scholar 

  70. Xia Y, Jiang C, Haddad GG (1992) Oxidative and glycolytic pathways in rat (newborn and adult) and turtle brain: role during anoxia. Am J Physiol 262:R595–R603

    PubMed  CAS  Google Scholar 

  71. Zhang JH, Gibney GT, Xia Y (2001) Effect of prolonged hypoxia on Na+ channel mRNA subtypes in the developing rat cortex. Brain Res Mol Brain Res 91:154–158

    Article  PubMed  CAS  Google Scholar 

  72. Tian X-S, Zhou F, Yang R, Xia Y, Wu G-C, Guo J-C (2008) Effects of intracerebroventricular injection of delta-opioid receptor agonist TAN-67 or antagonist naltrindole on acute cerebral ischemia in rat. Acta Physiol Sin 60:475–484

    CAS  Google Scholar 

  73. Zhang J, Gibney GT, Zhao P, Xia Y (2002) Neuroprotective role of delta-opioid receptors in cortical neurons. Am J Physiol Cell Physiol 282:C1225–C1234

    Article  PubMed  CAS  Google Scholar 

  74. Chao D, Balboni G, Lazarus LH, Salvadori S, Xia Y (2009) Na+ mechanism of d-opioid receptor induced protection from anoxic K+ leakage in the cortex. Cell Mol Life Sci 66:1–11

    Article  CAS  Google Scholar 

  75. Chao D, Bazzy-Asaad A, Balboni G, Salvadori S, Xia Y (2008) Activation of DOR attenuates anoxic K+ derangement via inhibition of Na+ entry in mouse cortex. Cereb Cortex 18:2217–2227

    Article  PubMed  Google Scholar 

  76. Chao D, Donnelly DF, Feng Y, Bazzy-Asaad A, Xia Y (2007) Cortical delta-opioid receptors potentiate K+ homeostasis during anoxia and oxygen-glucose deprivation. J Cereb Blood Flow Metab 27:356–368

    Article  PubMed  CAS  Google Scholar 

  77. Chao D, Bazzy-Asaad A, Balboni G, Xia Y (2007) Delta, but not mu, opioid receptor stabilizes K+ homeostasis by reducing Ca2+ influx in the cortex during acute hypoxia. J Cell Physiol 212:60–67

    Article  PubMed  CAS  Google Scholar 

  78. Chao D, Qian H, Ghassemi F, Chen J, Xia Y (2006) Transgenic overexpression of δ-opioid receptors protects the cortex from anoxic disruption of ionic homeostasis. Soc Neurosci Abstr MM68

  79. Ma M-C, Qian H, Ghassemi F, Zhao P, Xia Y (2005) Oxygen-sensitive delta-opioid receptor-regulated survival and death signals: novel insights into neuronal preconditioning and protection. J Biol Chem 280:16208–16218

    Article  PubMed  CAS  Google Scholar 

  80. Zhang JH, Xia Y, Haddad GG (1999) Activation of δ-opioid receptors protects cortical neurons from glutamate excitotoxic injury. Soc Neurosci Abstr 25:736

    Google Scholar 

  81. Kang X, Chao D, Gu Q, Ding G, Wang Y, Balboni G, Lazarus LH, Xia Y (2009) Delta-opioid receptors protect from anoxic disruption of Na+ homeostasis via Na+ channel regulation. Cell Mol Life Sci 66:3505–3516

    Article  PubMed  CAS  Google Scholar 

  82. Kang X, Gu Q, Ding G, Chao D, Wang Y, Balboni G, Lazarus L, Xia Y (2008) Delta-opioid receptor activation and sodium channel inhibition in Xenopus oocytes. Acta Physiol Sin 60:124

    Google Scholar 

  83. Zhao P, Ma M-C, Qian H, Xia Y (2005) Down-regulation of delta-opioid receptors in Na+/H+ exchanger 1 null mutant mouse brain with epilepsy. Neurosci Res 53:442–446

    Article  PubMed  CAS  Google Scholar 

  84. Feng Y, Chao D, He X, Yang Y, Kang X, Lazarus LH, Xia Y (2009) A novel insight into neuroprotection against hypoxic/ischemic stress. Acta Physiol Sin 61:585–592

    CAS  Google Scholar 

  85. Bhuiyan MIH, Kim YJ (2010) Mechanisms and prospects of ischemic tolerance induced by cerebral preconditioning. Int Neurourol J 14:203–212

    Article  PubMed  Google Scholar 

  86. Morris KC, Lin HW, Thompson JW, Perez-Pinzon MA (2011) Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning. J Cereb Blood Flow Metab 31:1003–1019

    Article  PubMed  CAS  Google Scholar 

  87. Zhao P, Huang Y, Zuo Z (2006) Opioid preconditioning induces opioid receptor-dependent delayed neuroprotection against ischemia in rats. J Neuropathol Exp Neurol 65:945–952

    Article  PubMed  CAS  Google Scholar 

  88. Zhao H (2011) The protective effects of ischemic postconditioning against stroke: from rapid to delayed and remote postconditioning. Open Drug Discov J 5:138–147

    PubMed  Google Scholar 

  89. Zhao H, Ren C, Chen X, Shen J (2012) From rapid to delayed and remote postconditioning: the evolving concept of ischemic postconditioning in brain ischemia. Curr Drug Targets 13:173–187

    Article  PubMed  CAS  Google Scholar 

  90. Peng P-HH, Huang H-SS, Lee Y-JJ, Chen Y-SS, Ma M-C (2009) Novel role for the delta-opioid receptor in hypoxic preconditioning in rat retinas. J Neurochem 108:741–754

    Article  PubMed  CAS  Google Scholar 

  91. Yang L, Wang H, Shah K, Karamyan VT, Abbruscato TJ (2011) Opioid receptor agonists reduce brain edema in stroke. Brain Res 1383:307–316

    Article  PubMed  CAS  Google Scholar 

  92. Borlongan CV, Wang Y, Su T-P (2004) Delta opioid peptide (d-Ala 2, d-Leu 5) enkephalin: linking hibernation and neuroprotection. Front Biosci 9:3392–3398

    Article  PubMed  CAS  Google Scholar 

  93. Borlongan CV, Hayashi T, Oeltgen PR, Su T-P, Wang Y (2009) Hibernation-like state induced by an opioid peptide protects against experimental stroke. BMC Biol 7:31

    Article  PubMed  CAS  Google Scholar 

  94. Zhu M, Li M, Tian X, Ou X, Zhu C, Guo J (2009) Neuroprotective role of delta-opioid receptors against mitochondrial respiratory chain injury. Brain Res 1252:183–191

    Article  PubMed  CAS  Google Scholar 

  95. Zhu M, Li M, Yang F, Ou X, Ren Q, Gao H, Zhu C, Guo J (2011) Mitochondrial ERK plays a key role in delta-opioid receptor neuroprotection against acute mitochondrial dysfunction. Neurochem Int 59:739–748

    Article  PubMed  CAS  Google Scholar 

  96. Duan YL, Wang SY, Zeng QW, Su DS, Li W, Wang XR, Zhao Z (2011) Astroglial reaction to delta opioid peptide [D-Ala2, D-Leu5] enkephalin confers neuroprotection against global ischemia in the adult rat hippocampus. Neuroscience 192:81–90

    Article  PubMed  CAS  Google Scholar 

  97. Turner SMF, Johnson SM (2011) Delta-opioid receptor activation prolongs respiratory motor output during oxygen-glucose deprivation in neonatal rat spinal cord in vitro. Neuroscience 187:70–83

    Article  PubMed  CAS  Google Scholar 

  98. Nandhu MS, Naijil G, Smijin S, Jayanarayanan S, Paulose CS (2010) Opioid system functional regulation in neurological disease management. J Neurosci Res 88:3215–3221

    Article  PubMed  CAS  Google Scholar 

  99. Gao Y, Liang W, Hu X, Zhang W, Stetler RA, Vosler P, Cao G, Chen J (2010) Neuroprotection against hypoxic-ischemic brain injury by inhibiting the apoptotic protease activating factor-1 pathway. Stroke 41:166–172

    Article  PubMed  Google Scholar 

  100. Pamenter ME, Buck LT (2008) Delta-opioid receptor antagonism induces NMDA receptor-dependent excitotoxicity in anoxic turtle cortex. J Exp Biol 211:3512–3517

    Article  PubMed  CAS  Google Scholar 

  101. Charron C, Messier C, Plamondon H (2008) Neuroprotection and functional recovery conferred by administration of kappa and delta 1-opioid agonists in a rat model of global ischemia. Physiol Behav 93:502–511

    Article  PubMed  CAS  Google Scholar 

  102. Narita M, Kuzumaki N, Miyatake M, Sato F, Wachi H, Seyama Y, Suzuki T (2006) Role of delta-opioid receptor function in neurogenesis and neuroprotection. J Neurochem 97:1494–1505

    Article  PubMed  CAS  Google Scholar 

  103. Su D, Wang Z, Zheng Y, Zhao Y, Wang X (2007) Dose-dependent neuroprotection of delta opioid peptide [d-Ala2, d-Leu5] enkephalin in neuronal death and retarded behavior induced by forebrain ischemia in rats. Neurosci Lett 423:113–117

    Article  PubMed  CAS  Google Scholar 

  104. Govindaswami M, Brown SA, Yu J, Zhu H, Bishop PD, Kindy MS, Oeltgen PR (2008) Delta 2-specific opioid receptor agonist and hibernating woodchuck plasma fraction provide ischemic neuroprotection. Acad Emerg Med 15:250–257

    Article  PubMed  Google Scholar 

  105. Xiong Z-G, Chu X-P, Simon RP (2007) Acid sensing ion channels–novel therapeutic targets for ischemic brain injury. Front Biosci 12:1376–1386

    Article  PubMed  CAS  Google Scholar 

  106. Xiong L, Yang J, Wang Q, Lu Z (2007) Involvement of delta and mu-opioid receptors in the delayed cerebral ischemic tolerance induced by repeated electroacupuncture preconditioning in rats. Chin Med J 120:394–399

    PubMed  CAS  Google Scholar 

  107. Iwata M, Inoue S, Kawaguchi M, Nakamura M, Konishi N, Furuya H (2007) Effects of delta-opioid receptor stimulation and inhibition on hippocampal survival in a rat model of forebrain ischaemia. Br J Anaesth 99:538–546

    Article  PubMed  CAS  Google Scholar 

  108. Horiuchi T, Kawaguchi M, Kurita N, Inoue S, Sakamoto T, Nakamura M, Konishi N, Furuya H (2008) Effects of delta-opioid agonist SNC80 on white matter injury following spinal cord ischemia in normothermic and mildly hypothermic rats. J Anesth 22:32–37

    Article  PubMed  Google Scholar 

  109. Horiuchi T, Kawaguchi M, Sakamoto T, Kurita N, Inoue S, Nakamura M, Konishi N, Furuya H (2004) The effects of the delta-opioid agonist SNC80 on hind-limb motor function and neuronal injury after spinal cord ischemia in rats. Anesth Analg 99:235–240

    Article  PubMed  CAS  Google Scholar 

  110. Bofetiado DM, Mayfield KP, D’Alecy LG (1996) Alkaloid delta agonist BW373U86 increases hypoxic tolerance. Anesth Analg 82:1237–1241

    PubMed  CAS  Google Scholar 

  111. Peart JN, Gross ER, Gross GJ (2005) Opioid-induced preconditioning: recent advances and future perspectives. Vascul Pharmacol 42:211–218

    Article  PubMed  CAS  Google Scholar 

  112. el Schultz JJ, Hsu AK, Nagase H, Gross GJ (1998) TAN-67, a delta 1-opioid receptor agonist, reduces infarct size via activation of Gi/o proteins and KATP channels. Am J Physiol 274:H909–H914

    CAS  Google Scholar 

  113. Sun FY, Zhang AZ, Xia Y (1989) Mechanism of dynorphin inhibition on vasoconstriction in vitro. Acta Physiol Sin 41:354–360

    CAS  Google Scholar 

  114. Tubbs RJ, Porcaro WA, Lee WJ, Blehar DJ, Carraway RE, Przyklenk K, Dickson EW (2002) Delta opiates increase ischemic tolerance in isolated rabbit jejunum. Acad Emerg Med 9:555–560

    Article  PubMed  Google Scholar 

  115. Yamanouchi K, Yanaga K, Okudaira S, Eguchi S, Furui J, Kanematsu T (2003) [d-Ala2, d-Leu5] enkephalin (DADLE) protects liver against ischemia-reperfusion injury in the rat. J Surg Res 114:72–77

    Article  PubMed  CAS  Google Scholar 

  116. O’Reilly JP, Jiang C, Haddad GG (1995) Major differences in response to graded hypoxia between hypoglossal and neocortical neurons. Brain Res 683:179–186

    Article  PubMed  Google Scholar 

  117. Liu D, Slevin JR, Lu C, Chan SL, Hansson M, Elmér E, Mattson MP (2003) Involvement of mitochondrial K+ release and cellular efflux in ischemic and apoptotic neuronal death. J Neurochem 86:966–979

    Article  PubMed  CAS  Google Scholar 

  118. Wei L, Yu SP, Gottron F, Snider BJ, Zipfel GJ, Choi DW (2003) Potassium channel blockers attenuate hypoxia and ischemia-induced neuronal death in vitro and in vivo. Stroke 34:1281–1286

    Article  PubMed  CAS  Google Scholar 

  119. Ostermeier AM, Schlösser B, Schwender D, Sutor B (2000) Activation of mu and delta-opioid receptors causes presynaptic inhibition of glutamatergic excitation in neocortical neurons. Anesthesiology 93:1053–1063

    Article  PubMed  CAS  Google Scholar 

  120. Tanaka E, North RA (1994) Opioid actions on rat anterior cingulate cortex neurons in vitro. J Neurosci 14:1106–1113

    PubMed  CAS  Google Scholar 

  121. Friedman JE, Haddad GG (1994) Anoxia induces an increase in intracellular sodium in rat central neurons in vitro. Brain Res 663:329–334

    Article  PubMed  CAS  Google Scholar 

  122. Chao D, He X, Yang Y, Balboni G, Salvadori S, Dong KH, Xia Y (2012) Hydrogen sulfide induced disruption of Na+ homeostasis in the cortex. Toxicol Sci 128:198–208

    Article  PubMed  CAS  Google Scholar 

  123. Bausch SB, Patterson TA, Appleyard SM, Chavkin C (1995) Immunocytochemical localization of delta opioid receptors in mouse brain. J Chem Neuroanat 8:175–189

    Article  PubMed  CAS  Google Scholar 

  124. Svingos AL, Cheng PY, Clarke CL, Pickel VM (1995) Ultrastructural localization of delta-opioid receptor and Met5-enkephalin immunoreactivity in rat insular cortex. Brain Res 700:25–39

    Article  PubMed  CAS  Google Scholar 

  125. Chen Y, Yu FH, Surmeier DJ, Scheuer T, Catterall WA (2006) Neuromodulation of Na+ channel slow inactivation via cAMP-dependent protein kinase and protein kinase C. Neuron 49:409–420

    Article  PubMed  CAS  Google Scholar 

  126. Chao D, He X, Yang Y, Bazzy-Asaad A, Lazarus LH, Balboni G, Kim DH, Xia Y (2012) DOR activation inhibits anoxic/ischemic Na+ influx through Na+ channels via PKC mechanisms in the cortex. Exp Neurol 236:228–239

    Article  PubMed  CAS  Google Scholar 

  127. Brouwer M, Larkin P, Brown-Peterson N, King C, Manning S, Denslow N (2004) Effects of hypoxia on gene and protein expression in the blue crab, Callinectes sapidus. Mar Environ Res 58:787–792

    Article  PubMed  CAS  Google Scholar 

  128. Bindra RS, Schaffer PJ, Meng A, Woo J, Måseide K, Roth ME, Lizardi P, Hedley DW, Bristow RG, Glazer PM (2005) Alterations in DNA repair gene expression under hypoxia: elucidating the mechanisms of hypoxia-induced genetic instability. Ann N Y Acad Sci 1059:184–195

    Article  PubMed  CAS  Google Scholar 

  129. Appenzeller O, Minko T, Qualls C, Pozharov V, Gamboa J, Gamboa A, Wang Y (2006) Gene expression, autonomic function and chronic hypoxia: lessons from the Andes. Clin Auton Res 16:217–222

    Article  PubMed  Google Scholar 

  130. Storey KB (2004) Adventures in oxygen metabolism. Comp Biochem Physiol B Biochem Mol Biol 139:359–369

    Article  PubMed  CAS  Google Scholar 

  131. Lin HW, Thompson JW, Morris KC, Perez-Pinzon MA (2011) Signal transducers and activators of transcription: STATs-mediated mitochondrial neuroprotection. Antioxid Redox Signal 14:1853–1861

    Article  PubMed  CAS  Google Scholar 

  132. Bolling SF, Tramontini NL, Kilgore KS, Su TP, Oeltgen PR, Harlow HH (1997) Use of “natural” hibernation induction triggers for myocardial protection. Ann Thorac Surg 64:623–627

    Article  PubMed  CAS  Google Scholar 

  133. Chen T-Y, Goyagi T, Toung TJK, Kirsch JR, Hurn PD, Koehler RC, Bhardwaj A (2004) Prolonged opportunity for ischemic neuroprotection with selective kappa-opioid receptor agonist in rats. Stroke 35:1180–1185

    Article  PubMed  CAS  Google Scholar 

  134. Haddad GG, Zhang JM, Bazzy AR, Xia Y (1999) Chronic hypoxia differentially regulates δ-opioid receptor expression in adult and immature brains. Soc. Neurosci Abstr 25:579

    Google Scholar 

  135. Sun K, Su DS, Wang XR (2009) Delta opioid agonist [d-Ala2, d-Leu5] enkephalin (DADLE) reduced oxygen-glucose deprivation caused neuronal injury through the MAPK pathway. Brain Res 1292:100–106

    Article  CAS  Google Scholar 

  136. Chen YL, Law P-Y, Loh HH (2006) Nuclear factor kappaB signaling in opioid functions and receptor gene expression. J Neuroimmune Pharmacol 1:270–279

    Article  PubMed  Google Scholar 

  137. Chen YL, Law P-Y, Loh HH (2008) NGF/PI3K signaling-mediated epigenetic regulation of delta opioid receptor gene expression. Biochem Biophys Res Commun 368:755–760

    Article  PubMed  CAS  Google Scholar 

  138. Wang S, Duan Y, Su D, Li W, Tan J, Yang D, Wang W, Zhao Z, Wang X (2011) Delta opioid peptide [d-Ala2, d-Leu5] enkephalin (DADLE) triggers postconditioning against transient forebrain ischemia. Eur J Pharmacol 658:140–144

    Article  PubMed  CAS  Google Scholar 

  139. Chen S-D, Yang D-I, Lin T-K, Shaw F-Z, Liou C-W, Chuang Y-C (2011) Roles of oxidative stress, apoptosis, PGC-1α and mitochondrial biogenesis in cerebral ischemia. Int J Mol Sci 12:7199–7215

    Article  PubMed  CAS  Google Scholar 

  140. Yang Y, Xia X, Zhang Y, Wang Q, Li L, Luo G, Xia Y (2009) δ-Opioid receptor activation attenuates oxidative injury in the ischemic rat brain. BMC Biol 7:55

    Article  PubMed  CAS  Google Scholar 

  141. Tsao LI, Su TP (2001) Hibernation-induction peptide and cell death: [d-Ala2, d-Leu5] enkephalin blocks Bax-related apoptotic processes. Eur J Pharmacol 428:149–151

    Article  PubMed  CAS  Google Scholar 

  142. Yao L, Wong GTC, Xia Z, Irwin MG, Tin G, Wong C (2011) Interaction between spinal opioid and adenosine receptors in remote cardiac preconditioning: effect of intrathecal morphine. J Cardiothorac Vasc Anesth 25:444–448

    Article  PubMed  CAS  Google Scholar 

  143. Stone TW (2005) Adenosine, neurodegeneration and neuroprotection. Neurol Res 27:161–168

    Article  PubMed  CAS  Google Scholar 

  144. Pedata F, Melani A, Pugliese AM, Coppi E, Cipriani S, Traini C (2007) The role of ATP and adenosine in the brain under normoxic and ischemic conditions. Purinergic Signal 3:299–310

    Article  PubMed  CAS  Google Scholar 

  145. Margolis EB, Fields HL, Hjelmstad GO, Mitchell JM (2008) Delta-opioid receptor expression in the ventral tegmental area protects against elevated alcohol consumption. J Neurosci 28:12672–12681

    Article  PubMed  CAS  Google Scholar 

  146. Gwak M-SS, Li L, Zuo Z (2010) Morphine preconditioning reduces lipopolysaccharide and interferon-gamma-induced mouse microglial cell injury via delta 1 opioid receptor activation. Neuroscience 167:256–260

    Article  PubMed  CAS  Google Scholar 

  147. Tian X, Zhou F, Yang R, Xia Y, Wu G, Guo J (2008) Electroacupuncture protects the brain against acute ischemic injury via up-regulation of delta-opioid receptor in rats. J Chin Integr Med 6:632–638

    Article  CAS  Google Scholar 

  148. Zhao P, Guo J, Hong S, Bazzy-Asaad A, Cheng J, Xia Y (2002) Electro- acupuncture and brain protection from cerebral ischemia: The role of delta-opioid receptor. In society for neuroscience online: SfN Abstract. Program no. 490.13

Download references

Acknowledgments

This work was supported by grants of NIH (HD-034852, AT-004422), Vivian L. Smith Neurologic Foundation, NSFC (31071046), CSDP (CS20102010) and CHB (ZD201007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Xia.

Additional information

Xiaozhou He and Harleen K. Sandhu contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X., Sandhu, H.K., Yang, Y. et al. Neuroprotection against hypoxia/ischemia: δ-opioid receptor-mediated cellular/molecular events. Cell. Mol. Life Sci. 70, 2291–2303 (2013). https://doi.org/10.1007/s00018-012-1167-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1167-2

Keywords

Navigation