Skip to main content

Metal Sequestration: An Important Contribution of Antimicrobial Peptides to Nutritional Immunity

  • Chapter
  • First Online:
Antimicrobial Peptides

Part of the book series: Birkhäuser Advances in Infectious Diseases ((BAID))

Abstract

First-row transition elements are essential for all forms of life. During infection invading microbes must obtain these nutrients from their host. Vertebrates take advantage of this fact to combat invaders by sequestering essential nutrients, a defense known as nutritional immunity. The most well-characterized aspect of this defense is the iron-withholding response. Advances in elemental imaging have revealed that zinc and manganese are also sequestered during infection. The importance of nutritional immunity to host defense is emphasized by the increased susceptibility to infection when levels of these metals are elevated. This chapter will discuss iron, zinc, and manganese availability during infection, the impact of withholding these metals from invading pathogens, and the antimicrobial peptides utilized by the host to restrict the availability of these essential nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abergel RJ, Wilson MK, Arceneaux JE, Hoette TM, Strong RK, Byers BR, Raymond KN (2006) Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc Natl Acad Sci U S A 103(49):18499–18503. doi:10.1073/pnas.0607055103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Achouiti A, Vogl T, Urban CF, Rohm M, Hommes TJ, van Zoelen MA, Florquin S, Roth J, van’t Veer C, de Vos AF, van der Poll T (2012) Myeloid-related protein-14 contributes to protective immunity in gram-negative pneumonia derived sepsis. PLoS Pathog 8(10):e1002987. doi:10.1371/journal.ppat.1002987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ammendola S, Pasquali P, Pistoia C, Petrucci P, Petrarca P, Rotilio G, Battistoni A (2007) High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. Infect Immun 75(12):5867–5876. doi:10.1128/IAI.00559-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson BF, Baker HM, Norris GE, Rumball SV, Baker EN (1990) Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins. Nature 344(6268):784–787. doi:10.1038/344784a0

    Article  CAS  PubMed  Google Scholar 

  • Anderson ES, Paulley JT, Gaines JM, Valderas MW, Martin DW, Menscher E, Brown TD, Burns CS, Roop RM 2nd (2009) The manganese transporter MntH is a critical virulence determinant for Brucella abortus 2308 in experimentally infected mice. Infect Immun 77(8):3466–3474. doi:10.1128/IAI.00444-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreini C, Banci L, Bertini I, Rosato A (2006) Zinc through the three domains of life. J Proteome Res 5(11):3173–3178. doi:10.1021/pr0603699

    Article  CAS  PubMed  Google Scholar 

  • Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13(8):1205–1218. doi:10.1007/s00775-008-0404-5

    Article  CAS  PubMed  Google Scholar 

  • Baker HM, Baker EN (2004) Lactoferrin and iron: structural and dynamic aspects of binding and release. Biometals Int J Role Metal Ions Biol Biochem Med 17(3):209–216

    Article  CAS  Google Scholar 

  • Bearden SW, Perry RD (1999) The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol 32(2):403–414

    Article  CAS  PubMed  Google Scholar 

  • Berry AM, Paton JC (1996) Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae. Infect Immun 64(12):5255–5262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blaschitz C, Raffatellu M (2010) Th17 cytokines and the gut mucosal barrier. J Clin Immunol 30(2):196–203. doi:10.1007/s10875-010-9368-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bobrov AG, Kirillina O, Fetherston JD, Miller MC, Burlison JA, Perry RD (2014) The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice. Mol Microbiol 93(4):759–775. doi:10.1111/mmi.12693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodersen DE, Nyborg J, Kjeldgaard M (1999) Zinc-binding site of an S100 protein revealed. Two crystal structures of Ca2+-bound human psoriasin (S100A7) in the Zn2+-loaded and Zn2+-free states. Biochemistry 38(6):1695–1704. doi:10.1021/bi982483d

    Article  CAS  PubMed  Google Scholar 

  • Brophy MB, Hayden JA, Nolan EM (2012) Calcium ion gradients modulate the zinc affinity and antibacterial activity of human calprotectin. J Am Chem Soc 134(43):18089–18100. doi:10.1021/ja307974e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brophy MB, Nakashige TG, Gaillard A, Nolan EM (2013) Contributions of the S100A9 C-terminal tail to high-affinity Mn(II) chelation by the host-defense protein human calprotectin. J Am Chem Soc 135(47):17804–17817. doi:10.1021/ja407147d

    Article  PubMed  PubMed Central  Google Scholar 

  • Campoy S, Jara M, Busquets N, Perez De Rozas AM, Badiola I, Barbe J (2002) Role of the high-affinity zinc uptake znuABC system in Salmonella enterica serovar typhimurium virulence. Infect Immun 70(8):4721–4725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassat JE, Skaar EP (2013) Iron in infection and immunity. Cell Host Microbe 13(5):509–519. doi:10.1016/j.chom.2013.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clohessy PA, Golden BE (1995) Calprotectin-mediated zinc chelation as a biostatic mechanism in host defence. Scand J Immunol 42(5):551–556

    Article  CAS  PubMed  Google Scholar 

  • Corbin BD, Seeley EH, Raab A, Feldmann J, Miller MR, Torres VJ, Anderson KL, Dattilo BM, Dunman PM, Gerads R, Caprioli RM, Nacken W, Chazin WJ, Skaar EP (2008) Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319(5865):962–965. doi:10.1126/science.1152449

    Article  CAS  PubMed  Google Scholar 

  • Damo SM, Kehl-Fie TE, Sugitani N, Holt ME, Rathi S, Murphy WJ, Zhang Y, Betz C, Hench L, Fritz G, Skaar EP, Chazin WJ (2013) Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. Proc Natl Acad Sci U S A 110(10):3841–3846. doi:10.1073/pnas.1220341110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis LM, Kakuda T, DiRita VJ (2009) A Campylobacter jejuni znuA orthologue is essential for growth in low-zinc environments and chick colonization. J Bacteriol 191(5):1631–1640. doi:10.1128/JB.01394-08

    Article  CAS  PubMed  Google Scholar 

  • Dintilhac A, Alloing G, Granadel C, Claverys JP (1997) Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol 25(4):727–739

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt C, Nemeth J, Angel P, Hess J (2006) S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 72(11):1622–1631. doi:10.1016/j.bcp.2006.05.017

    Article  CAS  PubMed  Google Scholar 

  • Gläser R, Harder J, Lange H, Bartels J, Christophers E, Schröder JM (2005) Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol 6(1):57–64. doi:10.1038/ni1142, ni1142 [pii]

    Article  PubMed  Google Scholar 

  • Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10(5):1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Hayden JA, Brophy MB, Cunden LS, Nolan EM (2013) High-affinity manganese coordination by human calprotectin is calcium-dependent and requires the histidine-rich site formed at the dimer interface. J Am Chem Soc 135(2):775–787. doi:10.1021/ja3096416

    Article  CAS  PubMed  Google Scholar 

  • Heizmann CW, Fritz G, Schafer BW (2002) S100 proteins: structure, functions and pathology. Front Biosci J Virtual Libr 7:d1356–d1368

    CAS  Google Scholar 

  • Hood MI, Skaar EP (2012) Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10(8):525–537. doi:10.1038/nrmicro2836

    Article  CAS  PubMed  Google Scholar 

  • Hood MI, Mortensen BL, Moore JL, Zhang Y, Kehl-Fie TE, Sugitani N, Chazin WJ, Caprioli RM, Skaar EP (2012) Identification of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration. PLoS Pathog 8(12):e1003068. doi:10.1371/journal.ppat.1003068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horsburgh MJ, Wharton SJ, Cox AG, Ingham E, Peacock S, Foster SJ (2002) MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol Microbiol 44(5):1269–1286

    Article  CAS  PubMed  Google Scholar 

  • Janakiraman A, Slauch JM (2000) The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella typhimurium. Mol Microbiol 35(5):1146–1155

    Article  CAS  PubMed  Google Scholar 

  • Janulczyk R, Ricci S, Bjorck L (2003) MtsABC is important for manganese and iron transport, oxidative stress resistance, and virulence of Streptococcus pyogenes. Infect Immun 71(5):2656–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehl-Fie TE, Skaar EP (2010) Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol 14(2):218–224. doi:10.1016/j.cbpa.2009.11.008

    Article  CAS  PubMed  Google Scholar 

  • Kehl-Fie TE, Chitayat S, Hood MI, Damo S, Restrepo N, Garcia C, Munro KA, Chazin WJ, Skaar EP (2011) Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe 10(2):158–164. doi:10.1016/j.chom.2011.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehl-Fie TE, Zhang Y, Moore JL, Farrand AJ, Hood MI, Rathi S, Chazin WJ, Caprioli RM, Skaar EP (2013) MntABC and MntH contribute to systemic Staphylococcus aureus infection by competing with calprotectin for nutrient manganese. Infect Immun 81(9):3395–3405. doi:10.1128/IAI.00420-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehres DG, Maguire ME (2003) Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria. FEMS Microbiol Rev 27(2–3):263–290

    Article  CAS  PubMed  Google Scholar 

  • Khan JA, Kumar P, Srinivasan A, Singh TP (2001) Protein intermediate trapped by the simultaneous crystallization process. Crystal structure of an iron-saturated intermediate in the Fe3+ binding pathway of camel lactoferrin at 2.7 a resolution. J Biol Chem 276(39):36817–36823. doi:10.1074/jbc.M104343200

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Watanabe K, Shirahata T, Watarai M (2004) Zinc uptake system (znuA locus) of Brucella abortus is essential for intracellular survival and virulence in mice. J Vet Med Sci Jpn Soc Vet Sci 66(9):1059–1063

    Article  CAS  Google Scholar 

  • Korndorfer IP, Brueckner F, Skerra A (2007) The crystal structure of the human (S100A8/S100A9)2 heterotetramer, calprotectin, illustrates how conformational changes of interacting alpha-helices can determine specific association of two EF-hand proteins. J Mol Biol 370(5):887–898. doi:10.1016/j.jmb.2007.04.065

    Article  PubMed  Google Scholar 

  • Lee KC, Eckert RL (2007) S100A7 (Psoriasin) – mechanism of antibacterial action in wounds. J Invest Dermatol 127(4):945–957. doi:10.1038/sj.jid.5700663, 5700663 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Helmann JD (2007) Functional specialization within the Fur family of metalloregulators. Biometals Int J Role Metal Ions Biol Biochem Med 20(3–4):485–499. doi:10.1007/s10534-006-9070-7

    Article  CAS  Google Scholar 

  • Lewis DA, Klesney-Tait J, Lumbley SR, Ward CK, Latimer JL, Ison CA, Hansen EJ (1999) Identification of the znuA-encoded periplasmic zinc transport protein of Haemophilus ducreyi. Infect Immun 67(10):5060–5068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JZ, Jellbauer S, Poe AJ, Ton V, Pesciaroli M, Kehl-Fie TE, Restrepo NA, Hosking MP, Edwards RA, Battistoni A, Pasquali P, Lane TE, Chazin WJ, Vogl T, Roth J, Skaar EP, Raffatellu M (2012) Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut. Cell Host Microbe 11(3):227–239. doi:10.1016/j.chom.2012.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayfield JA, Dehner CA, DuBois JL (2011) Recent advances in bacterial heme protein biochemistry. Curr Opin Chem Biol 15(2):260–266. doi:10.1016/j.cbpa.2011.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizutani K, Toyoda M, Mikami B (2012) X-ray structures of transferrins and related proteins. Biochim Biophys Acta 1820(3):203–211. doi:10.1016/j.bbagen.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  • Moroz OV, Blagova EV, Wilkinson AJ, Wilson KS, Bronstein IB (2009) The crystal structures of human S100A12 in apo form and in complex with zinc: new insights into S100A12 oligomerisation. J Mol Biol 391(3):536–551. doi:10.1016/j.jmb.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  • Moroz OV, Wilson KS, Bronstein IB (2011) The role of zinc in the S100 proteins: insights from the X-ray structures. Amino Acids 41(4):761–772. doi:10.1007/s00726-010-0540-4

    Article  CAS  PubMed  Google Scholar 

  • Murray JI, Tonkin ML, Whiting AL, Peng F, Farnell B, Cullen JT, Hof F, Boulanger MJ (2012) Structural characterization of S100A15 reveals a novel zinc coordination site among S100 proteins and altered surface chemistry with functional implications for receptor binding. BMC Struct Biol 12:16. doi:10.1186/1472-6807-12-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orsi N (2004) The antimicrobial activity of lactoferrin: current status and perspectives. Biometals Int J Role Metal Ions Biol Biochem Med 17(3):189–196

    Article  CAS  Google Scholar 

  • Ostendorp T, Diez J, Heizmann CW, Fritz G (2011) The crystal structures of human S100B in the zinc- and calcium-loaded state at three pH values reveal zinc ligand swapping. Biochim Biophys Acta 1813(5):1083–1091. doi:10.1016/j.bbamcr.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  • Papp-Wallace KM, Maguire ME (2006) Manganese transport and the role of manganese in virulence. Annu Rev Microbiol 60:187–209. doi:10.1146/annurev.micro.60.080805.142149

    Article  CAS  PubMed  Google Scholar 

  • Py B, Barras F (2010) Building Fe-S proteins: bacterial strategies. Nat Rev Microbiol 8(6):436–446. doi:10.1038/nrmicro2356

    Article  CAS  PubMed  Google Scholar 

  • Raffatellu M, George MD, Akiyama Y, Hornsby MJ, Nuccio SP, Paixao TA, Butler BP, Chu H, Santos RL, Berger T, Mak TW, Tsolis RM, Bevins CL, Solnick JV, Dandekar S, Baumler AJ (2009) Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5(5):476–486. doi:10.1016/j.chom.2009.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabri M, Houle S, Dozois CM (2009) Roles of the extraintestinal pathogenic Escherichia coli ZnuACB and ZupT zinc transporters during urinary tract infection. Infect Immun 77(3):1155–1164. doi:10.1128/IAI.01082-08

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Baker HM, Ge R, Sun H, He QY, Baker EN (2009) Crystal structure and metal binding properties of the lipoprotein MtsA, responsible for iron transport in Streptococcus pyogenes. Biochemistry 48(26):6184–6190. doi:10.1021/bi900552c

    Article  CAS  PubMed  Google Scholar 

  • Troxell B, Hassan HM (2013) Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol 3:59. doi:10.3389/fcimb.2013.00059

    PubMed  PubMed Central  Google Scholar 

  • Vallee BL, Auld DS (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29(24):5647–5659

    Article  CAS  PubMed  Google Scholar 

  • Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7(1):25–35. doi:10.1038/nrmicro2057

    Article  CAS  PubMed  Google Scholar 

  • Wally J, Buchanan SK (2007) A structural comparison of human serum transferrin and human lactoferrin. Biometals Int J Role Metal Ions Biol Biochem Med 20(3–4):249–262. doi:10.1007/s10534-006-9062-7

    Article  CAS  Google Scholar 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647. doi:10.1146/annurev.micro.58.030603.123811

    Article  CAS  PubMed  Google Scholar 

  • Weinberg ED (1974) Iron and susceptibility to infectious disease. Science 184(4140):952–956

    Article  CAS  PubMed  Google Scholar 

  • Weinberg ED (2009) Iron availability and infection. Biochim Biophys Acta 1790(7):600–605. doi:10.1016/j.bbagen.2008.07.002, S0304-4165(08)00145-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Weston BF, Brenot A, Caparon MG (2009) The metal homeostasis protein, Lsp, of Streptococcus pyogenes is necessary for acquisition of zinc and virulence. Infect Immun 77(7):2840–2848. doi:10.1128/IAI.01299-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Kehl-Fie PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Damo, S., Kehl-Fie, T.E. (2016). Metal Sequestration: An Important Contribution of Antimicrobial Peptides to Nutritional Immunity. In: Harder, J., Schröder, JM. (eds) Antimicrobial Peptides. Birkhäuser Advances in Infectious Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-24199-9_6

Download citation

Publish with us

Policies and ethics