Skip to main content

Advanced Imaging in Pulmonary Hypertension

  • Chapter
Pulmonary Hypertension

Abstract

Pulmonary hypertension is a pathophysiological state defined as mean pulmonary artery pressure ≥ 25 mmHg at rest determined by right heart catheterization. Various non-invasive imaging modalities have been used to not only establish a tentative diagnosis of pulmonary hypertension but to assess its severity, to identify underlying etiology, to monitor disease progression and response to treatment. Continuous wave Doppler measurements of peak velocity of the tricuspid regurgitant jet is used to determine systolic pulmonary artery pressure non invasively but has various shortcomings when describing the complex right ventricle. Chest radiography may give the first clue to the presence of pulmonary hypertension with information about the cardiac size and pulmonary vasculature. The role of ventilation-perfusion scintigraphy is in the highly sensitive detection of pulmonary embolism which may indicate chronic thromboembolic pulmonary hypertension. Various features of pulmonary hypertension in the main and peripheral pulmonary arteries as well as the lung parenchyma are well visualised by computed tomography. Measures of right ventricular function have been shown to be prognostic in pulmonary hypertension and cardiac magnetic resonance imaging provides accurate information regarding biventricular mass, volume and function. New advances in imaging techniques such as Positron Emission Tomography will give us greater insight into the basic pathobiology of pulmonary vascular remodeling and RV dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zenker G, Forche G, Harnoncourt K. Two-dimensional echocardiography using a subcostal approach in patients with COPD. Chest. 1985;88(5):722–5.

    Article  CAS  PubMed  Google Scholar 

  2. Danchin N, et al. Two-dimensional echocardiographic assessment of the right ventricle in patients with chronic obstructive lung disease. Chest. 1987;92(2):229–33.

    Article  CAS  PubMed  Google Scholar 

  3. Helbing WA. Right ventricular function: the comeback of echocardiography? Eur J Echocardiogr. 2004;5(2):99–101.

    Article  PubMed  Google Scholar 

  4. Helbing WA, et al. Comparison of echocardiographic methods with magnetic resonance imaging for assessment of right ventricular function in children. Am J Cardiol. 1995;76(8):589–94.

    Article  CAS  PubMed  Google Scholar 

  5. Shimada R, Takeshita A, Nakamura M. Noninvasive assessment of right ventricular systolic pressure in atrial septal defect: analysis of the end-systolic configuration of the ventricular septum by two-dimensional echocardiography. Am J Cardiol. 1984;53(8):1117–23.

    Article  CAS  PubMed  Google Scholar 

  6. Ryan T, et al. An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol. 1985;5(4):918–27.

    Article  CAS  PubMed  Google Scholar 

  7. Lei MH, et al. Reappraisal of quantitative evaluation of pulmonary regurgitation and estimation of pulmonary artery pressure by continuous wave Doppler echocardiography. Cardiology. 1995;86(3):249–56.

    Article  CAS  PubMed  Google Scholar 

  8. Nakao S, et al. Effects of positional changes on inferior vena caval size and dynamics and correlations with right-sided cardiac pressure. Am J Cardiol. 1987;59(1):125–32.

    Article  CAS  PubMed  Google Scholar 

  9. Kircher BJ, Himelman RB, Schiller NB. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol. 1990;66(4):493–6.

    Article  CAS  PubMed  Google Scholar 

  10. Aessopos A, et al. Doppler-determined peak systolic tricuspid pressure gradient in persons with normal pulmonary function and tricuspid regurgitation. J Am Soc Echocardiogr. 2000;13(7):645–9.

    Article  CAS  PubMed  Google Scholar 

  11. McQuillan BM, et al. Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation. 2001;104(23):2797–802.

    Article  CAS  PubMed  Google Scholar 

  12. Syyed R, et al. The relationship between the components of pulmonary artery pressure remains constant under all conditions in both health and disease. Chest. 2008;133(3):633–9.

    Article  PubMed  Google Scholar 

  13. Kitabatake A, et al. Noninvasive evaluation of pulmonary hypertension by a pulsed Doppler technique. Circulation. 1983;68(2):302–9.

    Article  CAS  PubMed  Google Scholar 

  14. Isobe M, et al. Prediction of pulmonary arterial pressure in adults by pulsed Doppler echocardiography. Am J Cardiol. 1986;57(4):316–21.

    Article  CAS  PubMed  Google Scholar 

  15. Matsuda M, et al. Reliability of non-invasive estimates of pulmonary hypertension by pulsed Doppler echocardiography. Br Heart J. 1986;56(2):158–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Gardin JM, et al. Relationship between age, body size, gender, and blood pressure and Doppler flow measurements in the aorta and pulmonary artery. Am Heart J. 1987;113(1):101–9.

    Article  CAS  PubMed  Google Scholar 

  17. Torbicki A, et al. Proximal pulmonary emboli modify right ventricular ejection pattern. Eur Respir J. 1999;13(3):616–21.

    Article  CAS  PubMed  Google Scholar 

  18. Raymond RJ, et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol. 2002;39(7):1214–9.

    Article  PubMed  Google Scholar 

  19. Tei C, et al. Doppler echocardiographic index for assessment of global right ventricular function. J Am Soc Echocardiogr. 1996;9(6):838–47.

    Article  CAS  PubMed  Google Scholar 

  20. Cheung MM, et al. The effects of changes in loading conditions and modulation of inotropic state on the myocardial performance index: comparison with conductance catheter measurements. Eur Heart J. 2004;25(24):2238–42.

    Article  PubMed  Google Scholar 

  21. Kaul S, et al. Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J. 1984;107(3):526–31.

    Article  CAS  PubMed  Google Scholar 

  22. Karatasakis GT, et al. Prognostic significance of echocardiographically estimated right ventricular shortening in advanced heart failure. Am J Cardiol. 1998;82(3):329–34.

    Article  CAS  PubMed  Google Scholar 

  23. Forfia PR, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174(9):1034–41.

    Article  PubMed  Google Scholar 

  24. Ghio S, et al. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol. 2010;140(3):272–8.

    Article  PubMed  Google Scholar 

  25. Mahapatra S, et al. The prognostic value of pulmonary vascular capacitance determined by Doppler echocardiography in patients with pulmonary arterial hypertension. J Am Soc Echocardiogr. 2006;19(8):1045–50.

    Article  PubMed  Google Scholar 

  26. Grapsa J, et al. Right ventricular remodelling in pulmonary arterial hypertension with three-dimensional echocardiography: comparison with cardiac magnetic resonance imaging. Eur J Echocardiogr. 2010;11(1):64–73.

    Article  PubMed  Google Scholar 

  27. Amaki M, et al. Usefulness of three-dimensional echocardiography in assessing right ventricular function in patients with primary pulmonary hypertension. Hypertens Res. 2009;32(5):419–22.

    Article  PubMed  Google Scholar 

  28. Di Bello V, et al. Advantages of real time three-dimensional echocardiography in the assessment of right ventricular volumes and function in patients with pulmonary hypertension compared with conventional two-dimensional echocardiography. Echocardiography. 2013;30(7):820–8.

    Article  PubMed  Google Scholar 

  29. Smith BC, et al. Three-dimensional speckle tracking of the right ventricle: toward optimal quantification of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol. 2014;64(1):41–51.

    Article  PubMed  Google Scholar 

  30. Bhave NM, et al. Three-dimensional modeling of the right ventricle from two-dimensional transthoracic echocardiographic images: utility of knowledge-based reconstruction in pulmonary arterial hypertension. J Am Soc Echocardiogr. 2013;26(8):860–7.

    Article  PubMed  Google Scholar 

  31. Chang CH. The normal roentgenographic measurement of the right descending pulmonary artery in 1,085 cases and its clinical application. II. Clinical application of the measurement of the right descending pulmonary artery in the radiological diagnosis of pulmonary hypertensions from various causes. Nagoya J Med Sci. 1965;28(1):67–80.

    CAS  PubMed  Google Scholar 

  32. Kanemoto N, et al. Chest roentgenograms in primary pulmonary hypertension. Chest. 1979;76(1):45–9.

    Article  CAS  PubMed  Google Scholar 

  33. Lupi HE, et al. Indications and radiological measurements in the evaluation of pulmonary artery hypertension. Arch Inst Cardiol Mex. 1975;45(1):34–42.

    CAS  PubMed  Google Scholar 

  34. Aaron RS, et al. The roentgenologic diagnosis of pulmonary hypertension in mitral stenosis. Am Heart J. 1957;53(2):163–70.

    Article  CAS  PubMed  Google Scholar 

  35. Arnould P, Pernot C, Simon A. Pulmonary arterial hypertension & pneumonectomy; significance of preoperative occlusion of the pulmonary artery. Rev Med Nancy. 1958;83:895–907.

    CAS  PubMed  Google Scholar 

  36. Chang CH. Roentgenographic correlation in pulmonary venous hypertension. Prediction of pulmonary venous pressure from plain chest films. Nippon Igaku Hoshasen Gakkai Zasshi. 1968;28(9):1222–31.

    CAS  PubMed  Google Scholar 

  37. Woodruff 3rd WW, et al. Radiographic findings in pulmonary hypertension from unresolved embolism. AJR Am J Roentgenol. 1985;144(4):681–6.

    Article  PubMed  Google Scholar 

  38. Tilkian AG, Schroeder JS, Robin ED. Chronic thromboembolic occlusion of main pulmonary artery or primary branches. Case report and review of the literature. Am J Med. 1976;60(4):563–70.

    Article  CAS  PubMed  Google Scholar 

  39. Moser KM, et al. Chronic thrombotic obstruction of major pulmonary arteries. Results of thromboendarterectomy in 15 patients. Ann Intern Med. 1983;99(3):299–304.

    Article  CAS  PubMed  Google Scholar 

  40. Benotti JR, et al. The clinical profile of unresolved pulmonary embolism. Chest. 1983;84(6):669–78.

    Article  CAS  PubMed  Google Scholar 

  41. Worsley DF, Palevsky HI, Alavi A. Ventilation-perfusion lung scanning in the evaluation of pulmonary hypertension. J Nucl Med. 1994;35(5):793–6.

    CAS  PubMed  Google Scholar 

  42. Tunariu N, et al. Ventilation-perfusion scintigraphy is more sensitive than multidetector CTPA in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonary hypertension. J Nucl Med. 2007;48(5):680–4.

    Article  PubMed  Google Scholar 

  43. Marten K, et al. Pattern-based differential diagnosis in pulmonary vasculitis using volumetric CT. AJR Am J Roentgenol. 2005;184(3):720–33.

    Article  PubMed  Google Scholar 

  44. Berry DF, et al. Pulmonary vascular occlusion and fibrosing mediastinitis. Chest. 1986;89(2):296–301.

    Article  CAS  PubMed  Google Scholar 

  45. Widera E, Sulica R. Pulmonary artery sarcoma misdiagnosed as chronic thromboembolic pulmonary hypertension. Mt Sinai J Med. 2005;72(6):360–4.

    PubMed  Google Scholar 

  46. Weisser K, Wyler F, Gloor F. Pulmonary veno-occlusive disease. Arch Dis Child. 1967;42(223):322–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Pitton MB, et al. Chronic thromboembolic pulmonary hypertension: diagnostic impact of Multislice-CT and selective Pulmonary-DSA. Rofo. 2002;174(4):474–9.

    Article  CAS  PubMed  Google Scholar 

  48. Kuriyama K, et al. CT-determined pulmonary artery diameters in predicting pulmonary hypertension. Invest Radiol. 1984;19(1):16–22.

    Article  CAS  PubMed  Google Scholar 

  49. Haimovici JB, et al. Relationship between pulmonary artery diameter at computed tomography and pulmonary artery pressures at right-sided heart catheterization. Massachusetts General Hospital Lung Transplantation Program. Acad Radiol. 1997;4(5):327–34.

    Article  CAS  PubMed  Google Scholar 

  50. Ng CS, Wells AU, Padley SP. A CT sign of chronic pulmonary arterial hypertension: the ratio of main pulmonary artery to aortic diameter. J Thorac Imaging. 1999;14(4):270–8.

    Article  CAS  PubMed  Google Scholar 

  51. Tan RT, et al. Utility of CT scan evaluation for predicting pulmonary hypertension in patients with parenchymal lung disease. Medical College of Wisconsin Lung Transplant Group. Chest. 1998;113(5):1250–6.

    Article  CAS  PubMed  Google Scholar 

  52. Mahammedi A, et al. Pulmonary artery measurements in pulmonary hypertension: the role of computed tomography. J Thorac Imaging. 2013;28(2):96–103.

    Article  PubMed  Google Scholar 

  53. Truong QA, et al. Reference values for normal pulmonary artery dimensions by noncontrast cardiac computed tomography: the Framingham Heart Study. Circ Cardiovasc Imaging. 2012;5(1):147–54.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Perloff JK, et al. Proximal pulmonary arterial and intrapulmonary radiologic features of Eisenmenger syndrome and primary pulmonary hypertension. Am J Cardiol. 2003;92(2):182–7.

    Article  PubMed  Google Scholar 

  55. Shimizu H, et al. Dilatation of bronchial arteries correlates with extent of central disease in patients with chronic thromboembolic pulmonary hypertension. Circ J. 2008;72(7):1136–41.

    Article  PubMed  Google Scholar 

  56. Hoey ET, et al. Cardiac causes of pulmonary arterial hypertension: assessment with multidetector CT. Eur Radiol. 2009;19(11):2557–68.

    Article  PubMed  Google Scholar 

  57. Groves AM, et al. Semi-quantitative assessment of tricuspid regurgitation on contrast-enhanced multidetector CT. Clin Radiol. 2004;59(8):715–9.

    Article  CAS  PubMed  Google Scholar 

  58. Yeh BM, et al. Clinical relevance of retrograde inferior vena cava or hepatic vein opacification during contrast-enhanced CT. AJR Am J Roentgenol. 2004;183(5):1227–32.

    Article  PubMed  Google Scholar 

  59. Hinderliter AL, et al. Frequency and prognostic significance of pericardial effusion in primary pulmonary hypertension. PPH Study Group. Primary pulmonary hypertension. Am J Cardiol. 1999;84(4):481–4, A10.

    Article  CAS  PubMed  Google Scholar 

  60. Sherrick AD, Swensen SJ, Hartman TE. Mosaic pattern of lung attenuation on CT scans: frequency among patients with pulmonary artery hypertension of different causes. AJR Am J Roentgenol. 1997;169(1):79–82.

    Article  CAS  PubMed  Google Scholar 

  61. Arakawa H, et al. Chronic pulmonary thromboembolism. Air trapping on computed tomography and correlation with pulmonary function tests. J Comput Assist Tomogr. 2003;27(5):735–42.

    Article  PubMed  Google Scholar 

  62. Remy-Jardin M, et al. Airway changes in chronic pulmonary embolism: CT findings in 33 patients. Radiology. 1997;203(2):355–60.

    Article  CAS  PubMed  Google Scholar 

  63. Willemink MJ, et al. CT evaluation of chronic thromboembolic pulmonary hypertension. Clin Radiol. 2012;67(3):277–85.

    Article  CAS  PubMed  Google Scholar 

  64. Bergin CJ, et al. Predictors of patient response to pulmonary thromboendarterectomy. AJR Am J Roentgenol. 2000;174(2):509–15.

    Article  CAS  PubMed  Google Scholar 

  65. Swensen SJ, et al. Pulmonary venoocclusive disease: CT findings in eight patients. AJR Am J Roentgenol. 1996;167(4):937–40.

    Article  CAS  PubMed  Google Scholar 

  66. Resten A, et al. Pulmonary hypertension: CT of the chest in pulmonary venoocclusive disease. AJR Am J Roentgenol. 2004;183(1):65–70.

    Article  PubMed  Google Scholar 

  67. Grothues F, et al. Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J. 2004;147(2):218–23.

    Article  PubMed  Google Scholar 

  68. Semelka RC, et al. Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. Am Heart J. 1990;119(6):1367–73.

    Article  CAS  PubMed  Google Scholar 

  69. Beerbaum P, et al. Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation. 2001;103(20):2476–82.

    Article  CAS  PubMed  Google Scholar 

  70. Vonk-Noordegraaf A, et al. Noninvasive assessment and monitoring of the pulmonary circulation. Eur Respir J. 2005;25(4):758–66.

    Article  CAS  PubMed  Google Scholar 

  71. van Wolferen SA, et al. Clinically significant change in stroke volume in pulmonary hypertension. Chest. 2011;139(5):1003–9.

    Article  PubMed  Google Scholar 

  72. van de Veerdonk MC, et al. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol. 2011;58(24):2511–9.

    Article  PubMed  Google Scholar 

  73. van Wolferen SA, et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007;28(10):1250–7.

    Article  PubMed  Google Scholar 

  74. Yamada Y, et al. Prognostic value of cardiac magnetic resonance imaging for idiopathic pulmonary arterial hypertension before initiating intravenous prostacyclin therapy. Circ J. 2012;76(7):1737–43.

    Article  CAS  PubMed  Google Scholar 

  75. Mauritz GJ, et al. Progressive changes in right ventricular geometric shortening and long-term survival in pulmonary arterial hypertension. Chest. 2012;141(4):935–43.

    Article  PubMed  Google Scholar 

  76. Peacock AJ, et al. Changes in right ventricular function measured by cardiac magnetic resonance imaging in patients receiving pulmonary arterial hypertension-targeted therapy: the EURO-MR study. Circ Cardiovasc Imaging. 2014;7(1):107–14.

    Article  PubMed  Google Scholar 

  77. Vogel-Claussen J, et al. Right and left ventricular myocardial perfusion reserves correlate with right ventricular function and pulmonary hemodynamics in patients with pulmonary arterial hypertension. Radiology. 2011;258(1):119–27.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Vogel-Claussen J, et al. Comprehensive adenosine stress perfusion MRI defines the etiology of chest pain in the emergency room: comparison with nuclear stress test. J Magn Reson Imaging. 2009;30(4):753–62.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Kreitner KF, et al. Chronic thromboembolic pulmonary hypertension: pre- and postoperative assessment with breath-hold MR imaging techniques. Radiology. 2004;232(2):535–43.

    Article  PubMed  Google Scholar 

  80. Blyth KG, et al. Contrast enhanced-cardiovascular magnetic resonance imaging in patients with pulmonary hypertension. Eur Heart J. 2005;26(19):1993–9.

    Article  PubMed  Google Scholar 

  81. Freed BH, et al. Late gadolinium enhancement cardiovascular magnetic resonance predicts clinical worsening in patients with pulmonary hypertension. J Cardiovasc Magn Reson. 2012;14:11.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Hagan G, et al. (18)FDG PET imaging can quantify increased cellular metabolism in pulmonary arterial hypertension: a proof-of-principle study. Pulm Circ. 2011;1(4):448–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Wang L, et al. Evaluation of right ventricular volume and ejection fraction by gated (18)F-FDG PET in patients with pulmonary hypertension: comparison with cardiac MRI and CT. J Nucl Cardiol. 2013;20(2):242–52.

    Article  PubMed  Google Scholar 

  84. Bokhari S, et al. PET imaging may provide a novel biomarker and understanding of right ventricular dysfunction in patients with idiopathic pulmonary arterial hypertension. Circ Cardiovasc Imaging. 2011;4(6):641–7.

    Article  PubMed  Google Scholar 

  85. Can MM, et al. Increased right ventricular glucose metabolism in patients with pulmonary arterial hypertension. Clin Nucl Med. 2011;36(9):743–8.

    Article  PubMed  Google Scholar 

  86. Fang W, et al. Comparison of 18F-FDG uptake by right ventricular myocardium in idiopathic pulmonary arterial hypertension and pulmonary arterial hypertension associated with congenital disease. Pulm Circ. 2012;2(3):365–72.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

Echocardiography images provided by Dr. Bouchra Lamia Associate Professor chez CHU-Hôpitaux de Rouen

CXR/CT/VQ and MRI images provided by Dr. Stephen Crawley, Glasgow Royal Infirmary, Glasgow

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Peacock MPhil, MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jayasekera, G., Peacock, A.J. (2016). Advanced Imaging in Pulmonary Hypertension. In: Maron, B., Zamanian, R., Waxman, A. (eds) Pulmonary Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-23594-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23594-3_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23593-6

  • Online ISBN: 978-3-319-23594-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics