Skip to main content
Log in

The role of nuclear imaging in pulmonary hypertension

  • CME ARTICLE
  • REVIEW ARTICLE
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Pulmonary hypertension (PH) is a disease characterized by a chronic elevation of pulmonary artery pressure from various causes. Pulmonary artery hypertension (PAH) is one of subtype which results in premature death often as a result of right ventricular (RV) dysfunction. In spite of the recent progress in novel cardiac imaging techniques and new drugs for PAH, there remain significant unresolved issues including a need for earlier diagnosis, refinement of risk stratification, and monitoring the effects of treatment. Cardiac and pulmonary imaging with transthoracic echocardiography (TTE) with Doppler, magnetic resonance imaging (MRI), and computed tomography (CT) are done routinely in many clinical centers. However, routine and emerging nuclear techniques may have a pivotal role of assessment of the patient with PH, and is currently the subject of significant research. Potential Roles for Nuclear Imaging in the Evaluation of the PH Patient: (1) Evaluation of cardiac structure and function (RNA) (non-nuclear techniques would include TTE, CT, and MRI). (2) Functional imaging. This includes the use of ventilation-perfusion scintigraphy (V/Q scan) to diagnose chronic thromboembolic pulmonary hypertension (CTEPH), 123l-metaiodobenzylguanidine (MIBG) imaging to evaluate the cardiac sympathetic nervous system (non-nuclear techniques include invasive right heart catheterization and TTE). (3) Measurement of RV perfusion (with gated SPECT studies). (4) Evaluation of cardiac and pulmonary metabolism (PET scans). This review article will summarize the pathophysiology, classification, natural history, and diagnostic approach of PH. Current and emerging nuclear techniques will be discussed under the four themes of evaluation of structure, functional imaging, flow, and metabolism. These will be compared to current and emerging nuclear and non-nuclear diagnostic tests in the evaluation and management of patients with PH. We will also discuss research applications exploring new insights into flow and metabolism in the right heart and lung and the application of new radioligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 1991;115:343-9.

    PubMed  Google Scholar 

  2. Naeije R, Melot C, Mols P, Hallemans R. Effects of vasodilators on hypoxic pulmonary vasoconstriction in normal man. Chest 1982;82:404-10.

    PubMed  CAS  Google Scholar 

  3. Melot C, Naeije R, Hallemans R, Lejeune P, Mols P. Hypoxic pulmonary vasoconstriction and pulmonary gas exchange in normal man. Respir Physiol 1987;68:11-27.

    PubMed  CAS  Google Scholar 

  4. Maggiorini M, Melot C, Pierre S, Pfeiffer F, Greve I, Sartori C, et al. High-altitude pulmonary edema is initially caused by an increase in capillary pressure. Circulation 2001;103:2078-83.

    PubMed  CAS  Google Scholar 

  5. Grossman WBE. Pulmonary hypertension. A textbook of cardiovascular medicine. Philadelphia: Elsevier; 1988.

    Google Scholar 

  6. Yaginuma G, Suzuki Y, Togo T, Komatsu T, Yamaki S, Mohri H, et al. A new experimental model of pulmonary hypertension in dog using an adjustable pulmonary artery band [Zasshi] [Journal]. Nihon Kyobu Geka Gakkai 1990;38:2194-201.

    CAS  Google Scholar 

  7. Hatano S, Strasser T. Primary pulmonary hypertension. Report on a WHO meeting. Geneva: World Health Organization; 1975, p. 7-45.

  8. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2013;62:D34-41.

    PubMed  Google Scholar 

  9. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation 2010;122:156-63.

    PubMed  Google Scholar 

  10. Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: The Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 2009;30:2493-537.

    PubMed  Google Scholar 

  11. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, et al. Pulmonary arterial hypertension in France: Results from a national registry. Am J Respir Crit Care Med 2006;173:1023-30.

    PubMed  Google Scholar 

  12. Brown LM, Chen H, Halpern S, Taichman D, McGoon MD, Farber HW, et al. Delay in recognition of pulmonary arterial hypertension: Factors identified from the REVEAL Registry. Chest 2011;140:19-26.

    PubMed Central  PubMed  Google Scholar 

  13. Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 2013;62:D42-50.

    PubMed  Google Scholar 

  14. Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: Pathophysiology, clinical importance, and management of right ventricular failure. Circulation 2008;117:1717-31.

    PubMed  Google Scholar 

  15. de Groote P, Millaire A, Foucher-Hossein C, Nugue O, Marchandise X, Ducloux G, et al. Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol 1998;32:948-54.

    PubMed  Google Scholar 

  16. Meyer P, Filippatos GS, Ahmed MI, Iskandrian AE, Bittner V, Perry GJ, et al. Effects of right ventricular ejection fraction on outcomes in chronic systolic heart failure. Circulation 2010;121:252-8.

    PubMed Central  PubMed  Google Scholar 

  17. Forfia PR, Fisher MR, Mathai SC, Housten-Harris T, Hemnes AR, Borlaug BA, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med 2006;174:1034-41.

    PubMed  Google Scholar 

  18. Friedman JD, Berman DS, Borges-Neto S, Hayes SW, Johnson LL, Nichols KJ, et al. First-pass radionuclide angiography. J Nucl Cardiol 2006;13:e42-55.

    PubMed  Google Scholar 

  19. Corbett JR, Akinboboye OO, Bacharach SL, Borer JS, Botvinick EH, DePuey EG, et al. Equilibrium radionuclide angiocardiography. J Nucl Cardiol 2006;13:e56-79.

    PubMed  Google Scholar 

  20. Daou D, Van Kriekinge SD, Coaguila C, Lebtahi R, Fourme T, Sitbon O, et al. Automatic quantification of right ventricular function with gated blood pool SPECT. J Nucl Cardiol 2004;11:293-304.

    PubMed  Google Scholar 

  21. Schulman DS. Assessment of the right ventricle with radionuclide techniques. J Nucl Cardiol 1996;3:253-64.

    PubMed  CAS  Google Scholar 

  22. Nichols K, Saouaf R, Ababneh AA, Barst RJ, Rosenbaum MS, Groch MW, et al. Validation of SPECT equilibrium radionuclide angiographic right ventricular parameters by cardiac magnetic resonance imaging. J Nucl Cardiol 2002;9:153-60.

    PubMed  Google Scholar 

  23. Rich JD, Ward RP. Right-ventricular function by nuclear cardiology. Curr Opin Cardiol 2010;25:445-50.

    PubMed  Google Scholar 

  24. Helbing WA, Bosch HG, Maliepaard C, Rebergen SA, van der Geest RJ, Hansen B, et al. Comparison of echocardiographic methods with magnetic resonance imaging for assessment of right ventricular function in children. Am J Cardiol 1995;76:589-94.

    PubMed  CAS  Google Scholar 

  25. Lai WW, Gauvreau K, Rivera ES, Saleeb S, Powell AJ, Geva T. Accuracy of guideline recommendations for two-dimensional quantification of the right ventricle by echocardiography. Int J Cardiovasc Imaging 2008;24:691-8.

    PubMed  Google Scholar 

  26. Menzel T, Kramm T, Bruckner A, Mohr-Kahaly S, Mayer E, Meyer J. Quantitative assessment of right ventricular volumes in severe chronic thromboembolic pulmonary hypertension using transthoracic three-dimensional echocardiography: Changes due to pulmonary thromboendarterectomy. Eur J Echocardiogr 2002;3:67-72.

    PubMed  CAS  Google Scholar 

  27. Kaul S, Tei C, Hopkins JM, Shah PM. Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J 1984;107:526-31.

    PubMed  CAS  Google Scholar 

  28. Tei C, Dujardin KS, Hodge DO, Bailey KR, McGoon MD, Tajik AJ, et al. Doppler echocardiographic index for assessment of global right ventricular function. J Am Soc Echocardiogr 1996;9:838-47.

    PubMed  CAS  Google Scholar 

  29. Wahl A, Praz F, Schwerzmann M, Bonel H, Koestner SC, Hullin R, et al. Assessment of right ventricular systolic function: Comparison between cardiac magnetic resonance derived ejection fraction and pulsed-wave tissue Doppler imaging of the tricuspid annulus. Int J Cardiol 2011;151:58-62.

    PubMed  Google Scholar 

  30. Rajagopalan N, Simon MA, Shah H, Mathier MA, Lopez-Candales A. Utility of right ventricular tissue Doppler imaging: Correlation with right heart catheterization. Echocardiography 2008;25:706-11.

    PubMed  Google Scholar 

  31. Lopez-Candales A, Rajagopalan N, Dohi K, Edelman K, Gulyasy B. Normal range of mechanical variables in pulmonary hypertension: A tissue Doppler imaging study. Echocardiography 2008;25:864-72.

    PubMed  Google Scholar 

  32. Fukuda Y, Tanaka H, Sugiyama D, Ryo K, Onishi T, Fukuya H, et al. Utility of right ventricular free wall speckle-tracking strain for evaluation of right ventricular performance in patients with pulmonary hypertension. J Am Soc Echocardiogr 2011;24:1101-8.

    PubMed  Google Scholar 

  33. Sato T, Tsujino I, Ohira H, Oyama-Manabe N, Yamada A, Ito YM, et al. Validation study on the accuracy of echocardiographic measurements of right ventricular systolic function in pulmonary hypertension. J Am Soc Echocardiogr 2012;25:280-6.

    PubMed  Google Scholar 

  34. Raymond RJ, Hinderliter AL, Willis PW, Ralph D, Caldwell EJ, Williams W, et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol 2002;39:1214-9.

    PubMed  Google Scholar 

  35. Hinderliter AL, Willis PWT, Long W, Clarke WR, Ralph D, Caldwell EJ, et al. Frequency and prognostic significance of pericardial effusion in primary pulmonary hypertension. PPH Study Group. Primary Pulmonary Hypertension. Am J Cardiol 1999;84:481-4, A10.

  36. Montani D, Price LC, Dorfmuller P, Achouh L, Jais X, Yaici A, et al. Pulmonary veno-occlusive disease. Eur Respir J 2009;33:189-200.

    PubMed  CAS  Google Scholar 

  37. Cottin V, Le Pavec J, Prevot G, Mal H, Humbert M, Simonneau G, et al. Pulmonary hypertension in patients with combined pulmonary fibrosis and emphysema syndrome. Eur Respir J 2010;35:105-11.

    PubMed  CAS  Google Scholar 

  38. Reichelt A, Hoeper MM, Galanski M, Keberle M. Chronic thromboembolic pulmonary hypertension: Evaluation with 64-detector row CT versus digital substraction angiography. Eur J Radiol 2009;71:49-54.

    PubMed  Google Scholar 

  39. Sugiura T, Tanabe N, Matsuura Y, Shigeta A, Kawata N, Jujo T, et al. Role of 320-slice CT imaging in the diagnostic workup of patients with chronic thromboembolic pulmonary hypertension. Chest 2013;143:1070-7.

    PubMed  Google Scholar 

  40. Oikonomou A, Dennie CJ, Muller NL, Seely JM, Matzinger FR, Rubens FD. Chronic thromboembolic pulmonary arterial hypertension: Correlation of postoperative results of thromboendarterectomy with preoperative helical contrast-enhanced computed tomography. J Thorac Imaging 2004;19:67-73.

    PubMed  Google Scholar 

  41. Wang L, Zhang Y, Yan C, He J, Xiong C, Zhao S, et al. Evaluation of right ventricular volume and ejection fraction by gated (18)F-FDG PET in patients with pulmonary hypertension: Comparison with cardiac MRI and CT. J Nucl Cardiol 2013;20:242-52.

    PubMed  Google Scholar 

  42. Huang X, Pu X, Dou R, Guo X, Yan Z, Zhang Z, et al. Assessment of right ventricular function with 320-slice volume cardiac CT: Comparison with cardiac magnetic resonance imaging. Int J Cardiovasc Imaging 2012;28(Suppl 2):87-92.

    PubMed  Google Scholar 

  43. Semelka RC, Tomei E, Wagner S, Mayo J, Kondo C, Suzuki J, et al. Normal left ventricular dimensions and function: Interstudy reproducibility of measurements with cine MR imaging. Radiology 1990;174:763-8.

    PubMed  CAS  Google Scholar 

  44. Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 2002;90:29-34.

    PubMed  Google Scholar 

  45. Roeleveld RJ, Marcus JT, Faes TJ, Gan TJ, Boonstra A, Postmus PE, et al. Interventricular septal configuration at MR imaging and pulmonary arterial pressure in pulmonary hypertension. Radiology 2005;234:710-7.

    PubMed  Google Scholar 

  46. van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD, et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 2007;28:1250-7.

    PubMed  Google Scholar 

  47. Swift AJ, Rajaram S, Campbell MJ, Hurdman J, Thomas S, Capener D, et al. Prognostic value of cardiovascular magnetic resonance imaging measurements corrected for age and sex in idiopathic pulmonary arterial hypertension. Circ Cardiovasc Imaging 2014;7:100-6.

    PubMed  Google Scholar 

  48. Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 2009;34:1219-63.

    PubMed  Google Scholar 

  49. Fishman AJ, Moser KM, Fedullo PF. Perfusion lung scans vs pulmonary angiography in evaluation of suspected primary pulmonary hypertension. Chest 1983;84:679-83.

    PubMed  CAS  Google Scholar 

  50. Powe JE, Palevsky HI, McCarthy KE, Alavi A. Pulmonary arterial hypertension: Value of perfusion scintigraphy. Radiology 1987;164:727-30.

    PubMed  CAS  Google Scholar 

  51. Worsley DF, Palevsky HI, Alavi A. Ventilation-perfusion lung scanning in the evaluation of pulmonary hypertension. J Nucl Med 1994;35:793-6.

    PubMed  CAS  Google Scholar 

  52. Viner SM, Bagg BR, Auger WR, Ford GT. The management of pulmonary hypertension secondary to chronic thromboembolic disease. Prog Cardiovasc Dis 1994;37:79-92.

    PubMed  CAS  Google Scholar 

  53. Tunariu N, Gibbs SJ, Win Z, Gin-Sing W, Graham A, Gishen P, et al. Ventilation-perfusion scintigraphy is more sensitive than multidetector CTPA in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonary hypertension. J Nucl Med 2007;48:680-4.

    PubMed  Google Scholar 

  54. Haque U, Hellmann D, Traill T, Venbrux A, Stone J. Takayasu’s arteritis involving proximal pulmonary arteries and mimicking thromboembolic disease. J Rheumatol 1999;26:450-3.

    PubMed  CAS  Google Scholar 

  55. Widera E, Sulica R. Pulmonary artery sarcoma misdiagnosed as chronic thromboembolic pulmonary hypertension. Mt Sinai J Med 2005;72:360-4.

    PubMed  Google Scholar 

  56. Berry DF, Buccigrossi D, Peabody J, Peterson KL, Moser KM. Pulmonary vascular occlusion and fibrosing mediastinitis. Chest 1986;89:296-301.

    PubMed  CAS  Google Scholar 

  57. Damuth TE, Bower JS, Cho K, Dantzker DR. Major pulmonary artery stenosis causing pulmonary hypertension in sarcoidosis. Chest 1980;78:888-91.

    PubMed  CAS  Google Scholar 

  58. Seferian A, Helal B, Jais X, Girerd B, Price LC, Gunther S, et al. Ventilation/perfusion lung scan in pulmonary veno-occlusive disease. Eur Respir J 2012;40:75-83.

    PubMed  Google Scholar 

  59. Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med 1999;341:577-85.

    PubMed  CAS  Google Scholar 

  60. Verrier RL, Antzelevitch C. Autonomic aspects of arrhythmogenesis: The enduring and the new. Curr Opin Cardiol 2004;19:2-11.

    PubMed Central  PubMed  Google Scholar 

  61. Schofer J, Spielmann R, Schuchert A, Weber K, Schluter M. Iodine-123 meta-iodobenzylguanidine scintigraphy: A noninvasive method to demonstrate myocardial adrenergic nervous system disintegrity in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 1988;12:1252-8.

    PubMed  CAS  Google Scholar 

  62. Nakata T, Miyamoto K, Doi A, Sasao H, Wakabayashi T, Kobayashi H, et al. Cardiac death prediction and impaired cardiac sympathetic innervation assessed by MIBG in patients with failing and nonfailing hearts. J Nucl Cardiol 1998;5:579-90.

    PubMed  CAS  Google Scholar 

  63. Morimitsu T, Miyahara Y, Sinboku H, Ikeda S, Naito T, Nishijima K, et al. Iodine-123-metaiodobenzylguanidine myocardial imaging in patients with right ventricular pressure overload. J Nucl Med 1996;37:1343-6.

    PubMed  CAS  Google Scholar 

  64. Morimitsu T, Miyahara Y, Sonoda K, Kohno S. Iodine-123 metaiodobenzylguanidine myocardial imaging in patients with pulmonary hypertension. J Int Med Res 1997;25:53-61.

    PubMed  CAS  Google Scholar 

  65. Yock PG, Popp RL. Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation 1984;70:657-62.

    PubMed  CAS  Google Scholar 

  66. Currie PJ, Seward JB, Chan KL, Fyfe DA, Hagler DJ, Mair DD, et al. Continuous wave Doppler determination of right ventricular pressure: A simultaneous Doppler-catheterization study in 127 patients. J Am Coll Cardiol 1985;6:750-6.

    PubMed  CAS  Google Scholar 

  67. Berger M, Haimowitz A, Van Tosh A, Berdoff RL, Goldberg E. Quantitative assessment of pulmonary hypertension in patients with tricuspid regurgitation using continuous wave Doppler ultrasound. J Am Coll Cardiol 1985;6:359-65.

    PubMed  CAS  Google Scholar 

  68. Fisher MR, Forfia PR, Chamera E, Housten-Harris T, Champion HC, Girgis RE, et al. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med 2009;179:615-21.

    PubMed Central  PubMed  Google Scholar 

  69. Hinderliter AL, Willis PWT, Barst RJ, Rich S, Rubin LJ, Badesch DB, et al. Effects of long-term infusion of prostacyclin (epoprostenol) on echocardiographic measures of right ventricular structure and function in primary pulmonary hypertension. Primary Pulmonary Hypertension Study Group. Circulation 1997;95:1479-86.

  70. McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 2009;53:1573-619.

    PubMed  Google Scholar 

  71. McLaughlin VV, McGoon MD. Pulmonary arterial hypertension. Circulation 2006;114:1417-31.

    PubMed  Google Scholar 

  72. Cohen HA, Baird MG, Rouleau JR, Fuhrmann CF, Bailey IK, Summer WR, et al. Thallium 201 myocardial imaging in patients with pulmonary hypertension. Circulation 1976;54:790-5.

    PubMed  CAS  Google Scholar 

  73. Shuck JW, Walder J, Oetgen WJ, Thomas HM. Right ventricular visualization by thallium 201 myocardial scintigraphy in chronic obstructive pulmonary disease. South Med J 1985;78:1435-9.

    PubMed  CAS  Google Scholar 

  74. Aepfelbacher FC, Yeon SB, Ho KK, Parker JA, Danias PG. ECG-gated 99mTc single-photon emission CT for assessment of right ventricular structure and function: Is the information provided similar to echocardiography? Chest 2003;124:227-32.

    PubMed  Google Scholar 

  75. Nishijima K, Miyahara Y, Furukawa K, Matsushita T, Kohno S. Simultaneous assessment of right ventricular function and hypertrophy by Tc-99m MIBI. Clin Nucl Med 1999;24:151-5.

    PubMed  CAS  Google Scholar 

  76. Movahed MR, Hepner A, Lizotte P, Milne N. Flattening of the interventricular septum (D-shaped left ventricle) in addition to high right ventricular tracer uptake and increased right ventricular volume found on gated SPECT studies strongly correlates with right ventricular overload. J Nucl Cardiol 2005;12:428-34.

    PubMed  Google Scholar 

  77. Mazraeshahi RM, Striet J, Oeltgen RC, Gerson MC. Myocardial SPECT images for diagnosis of pulmonary hypertension and right ventricular hypertrophy. J Nucl Med Technol 2010;38:175-80.

    PubMed  Google Scholar 

  78. Wackers FJ. On the bright right side. J Nucl Cardiol 2005;12:378-80.

    PubMed  Google Scholar 

  79. Gomez A, Bialostozky D, Zajarias A, Santos E, Palomar A, Martinez ML, et al. Right ventricular ischemia in patients with primary pulmonary hypertension. J Am Coll Cardiol 2001;38:1137-42.

    PubMed  CAS  Google Scholar 

  80. Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, et al. Right heart adaptation to pulmonary arterial hypertension: Physiology and pathobiology. J Am Coll Cardiol 2013;62:D22-33.

    PubMed  Google Scholar 

  81. Archer SL, Weir EK, Wilkins MR. Basic science of pulmonary arterial hypertension for clinicians: New concepts and experimental therapies. Circulation 2010;121:2045-66.

    PubMed Central  PubMed  Google Scholar 

  82. Neubauer S. The failing heart: An engine out of fuel. N Engl J Med 2007;356:1140-51.

    PubMed  Google Scholar 

  83. Taegtmeyer H. Genetics of energetics: Transcriptional responses in cardiac metabolism. Ann Biomed Eng 2000;28:871-6.

    PubMed  CAS  Google Scholar 

  84. Nagaya N, Goto Y, Satoh T, Uematsu M, Hamada S, Kuribayashi S, et al. Impaired regional fatty acid uptake and systolic dysfunction in hypertrophied right ventricle. J Nucl Med 1998;39:1676-80.

    PubMed  CAS  Google Scholar 

  85. Matsushita T, Ikeda S, Miyahara Y, Yakabe K, Yamaguchi K, Furukawa K, et al. Use of [123I]-BMIPP myocardial scintigraphy for the clinical evaluation of a fatty-acid metabolism disorder of the right ventricle in chronic respiratory and pulmonary vascular disease. J Int Med Res 2000;28:111-23.

    PubMed  CAS  Google Scholar 

  86. Kluge R, Barthel H, Pankau H, Seese A, Schauer J, Wirtz H, et al. Different mechanisms for changes in glucose uptake of the right and left ventricular myocardium in pulmonary hypertension. J Nucl Med 2005;46:25-31.

    PubMed  CAS  Google Scholar 

  87. Bokhari S, Raina A, Rosenweig EB, Schulze PC, Bokhari J, Einstein AJ, et al. PET imaging may provide a novel biomarker and understanding of right ventricular dysfunction in patients with idiopathic pulmonary arterial hypertension. Circ Cardiovasc Imaging 2011;4:641-7.

    PubMed  Google Scholar 

  88. Oikawa M, Kagaya Y, Otani H, Sakuma M, Demachi J, Suzuki J, et al. Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J Am Coll Cardiol 2005;45:1849-55.

    PubMed  CAS  Google Scholar 

  89. Mielniczuk LM, Birnie D, Ziadi MC, de Kemp RA, Da Silva JN, Burwash I, et al. Relation between right ventricular function and increased right ventricular [18F]fluorodeoxyglucose accumulation in patients with heart failure. Circ Cardiovasc Imaging 2011;4:59-66.

    PubMed  Google Scholar 

  90. Tatebe S, Fukumoto Y, Oikawa-Wakayama M, Sugimura K, Satoh K, Miura Y, et al. Enhanced [18F]fluorodeoxyglucose accumulation in the right ventricular free wall predicts long-term prognosis of patients with pulmonary hypertension: A preliminary observational study. Eur Heart J Cardiovasc Imaging 2014;15(6):666-72.

    PubMed  Google Scholar 

  91. van Wolferen SA, Marcus JT, Westerhof N, Spreeuwenberg MD, Marques KM, Bronzwaer JG, et al. Right coronary artery flow impairment in patients with pulmonary hypertension. Eur Heart J 2008;29:120-7.

    PubMed  Google Scholar 

  92. Piao L, Fang YH, Cadete VJ, Wietholt C, Urboniene D, Toth PT, et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: Resuscitating the hibernating right ventricle. J Mol Med (Berl) 2010;88:47-60.

    CAS  Google Scholar 

  93. Dang CV, Kim JW, Gao P, Yustein J. The interplay between MYC and HIF in cancer. Nat Rev Cancer 2008;8:51-6.

    PubMed  CAS  Google Scholar 

  94. Jaswal JS, Gandhi M, Finegan BA, Dyck JR, Clanachan AS. p38 mitogen-activated protein kinase mediates adenosine-induced alterations in myocardial glucose utilization via 5′-AMP-activated protein kinase. Am J Physiol Heart Circ Physiol 2007;292:H1978-85.

    PubMed  CAS  Google Scholar 

  95. Graham RM, Frazier DP, Thompson JW, Haliko S, Li H, Wasserlauf BJ, et al. A unique pathway of cardiac myocyte death caused by hypoxia-acidosis. J Exp Biol 2004;207:3189-200.

    PubMed  CAS  Google Scholar 

  96. Yoshinaga K, Ohira H, Tsujino I, Oyama-Manabe N, Mielniczuk L, Beanlands RS, et al. Attenuated right ventricular energetics evaluated using C-acetate PET in patients with pulmonary hypertension. Eur J Nucl Med Mol Imaging 2014;41:1240-50.

    PubMed  CAS  Google Scholar 

  97. Xu W, Koeck T, Lara AR, Neumann D, DiFilippo FP, Koo M, et al. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci USA 2007;104:1342-7.

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Hagan G, Southwood M, Treacy C, Ross RM, Soon E, Coulson J, et al. (18)FDG PET imaging can quantify increased cellular metabolism in pulmonary arterial hypertension: A proof-of-principle study. Pulm. Circ 2011;1:448-55.

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Marsboom G, Wietholt C, Haney CR, Toth PT, Ryan JJ, Morrow E, et al. Lung (1)(8)F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension. Am J Respir Crit Care Med 2012;185:670-9.

    PubMed Central  PubMed  CAS  Google Scholar 

  100. Zhao L, Ashek A, Wang L, Fang W, Dabral S, Dubois O, et al. Heterogeneity in lung (18)FDG uptake in pulmonary arterial hypertension: Potential of dynamic (18)FDG positron emission tomography with kinetic analysis as a bridging biomarker for pulmonary vascular remodeling targeted treatments. Circulation 2013;128:1214-24.

    PubMed  CAS  Google Scholar 

  101. Humbert M, Sitbon O, Simonneau G. Treatment of pulmonary arterial hypertension. N Engl J Med 2004;351:1425-36.

    PubMed  CAS  Google Scholar 

  102. Jakobsen S, Kodahl GM, Olsen AK, Cumming P. Synthesis, radiolabeling and in vivo evaluation of [11C]RAL-01, a potential phosphodiesterase 5 radioligand. Nucl Med Biol 2006;33:593-7.

    PubMed  CAS  Google Scholar 

  103. Gan CT, Lankhaar JW, Westerhof N, Marcus JT, Becker A, Twisk JW, et al. Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest 2007;132:1906-12.

    PubMed  Google Scholar 

  104. Lankhaar JW, Westerhof N, Faes TJ, Gan CT, Marques KM, Boonstra A, et al. Pulmonary vascular resistance and compliance stay inversely related during treatment of pulmonary hypertension. Eur Heart J 2008;29:1688-95.

    PubMed  Google Scholar 

  105. McCann GP, Beek AM, Vonk-Noordegraaf A, van Rossum AC. Delayed contrast-enhanced magnetic resonance imaging in pulmonary arterial hypertension. Circulation 2005;112:e268.

    PubMed  Google Scholar 

  106. Blyth KG, Groenning BA, Martin TN, Foster JE, Mark PB, Dargie HJ, et al. Contrast enhanced-cardiovascular magnetic resonance imaging in patients with pulmonary hypertension. Eur Heart J 2005;26:1993-9.

    PubMed  Google Scholar 

  107. Shehata ML, Lossnitzer D, Skrok J, Boyce D, Lechtzin N, Mathai SC, et al. Myocardial delayed enhancement in pulmonary hypertension: Pulmonary hemodynamics, right ventricular function, and remodeling. AJR Am J Roentgenol 2011;196:87-94.

    PubMed Central  PubMed  Google Scholar 

  108. McCann GP, Gan CT, Beek AM, Niessen HW, Vonk Noordegraaf A, van Rossum AC. Extent of MRI delayed enhancement of myocardial mass is related to right ventricular dysfunction in pulmonary artery hypertension. AJR Am J Roentgenol 2007;188:349-55.

    PubMed  Google Scholar 

  109. Kreitner KF, Ley S, Kauczor HU, Mayer E, Kramm T, Pitton MB, et al. Chronic thromboembolic pulmonary hypertension: Pre- and postoperative assessment with breath-hold MR imaging techniques. Radiology 2004;232:535-43.

    PubMed  Google Scholar 

  110. Ley S, Fink C, Zaporozhan J, Borst MM, Meyer FJ, Puderbach M, et al. Value of high spatial and high temporal resolution magnetic resonance angiography for differentiation between idiopathic and thromboembolic pulmonary hypertension: Initial results. Eur Radiol 2005;15:2256-63.

    PubMed  Google Scholar 

  111. Niemann PS, Pinho L, Balbach T, Galuschky C, Blankenhagen M, Silberbach M, et al. Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging. J Am Coll Cardiol 2007;50:1668-76.

    PubMed  Google Scholar 

  112. Jenkins C, Chan J, Bricknell K, Strudwick M, Marwick TH. Reproducibility of right ventricular volumes and ejection fraction using real-time three-dimensional echocardiography: Comparison with cardiac MRI. Chest 2007;131:1844-51.

    PubMed  Google Scholar 

  113. van der Zwaan HB, Geleijnse ML, Soliman OI, McGhie JS, Wiegers-Groeneweg EJ, Helbing WA, et al. Test-retest variability of volumetric right ventricular measurements using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 2011;24:671-9.

    PubMed  Google Scholar 

  114. Khoo NS, Young A, Occleshaw C, Cowan B, Zeng IS, Gentles TL. Assessments of right ventricular volume and function using three-dimensional echocardiography in older children and adults with congenital heart disease: Comparison with cardiac magnetic resonance imaging. J Am Soc Echocardiogr 2009;22:1279-88.

    PubMed  Google Scholar 

Download references

Acknowledgments

Cases for V/Q scan provided by Drs Tsujino and Sato in Hokkaido University Hospital in Sapporo, Japan. H.O. is supported by Hokkaido Heart Association Grant for Research and The University of Ottawa Heart Institute’s Whit & Heather Tucker Endowed Research Fellowship in Cardiology Award. R.S.B. is a career investigator supported by the Heart and Stroke Foundation of Ontario (HSFO) and Tier 1 Research Chair supported by the University of Ottawa. L.M. is a clinician investigator supported by the Heart and Stroke Foundation of Ontario (HFSO).

Disclosures

H. Ohira, R. A. Davies, and L. Mielniczuk declare that they have nothing to disclose. R. S. Beanlands declares that this work was supported by Lantheus Medical Imaging, GE Healthcare, and Jubilant DRAXImage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mielniczuk MD, FRCPC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohira, H., Beanlands, R.S., Davies, R.A. et al. The role of nuclear imaging in pulmonary hypertension. J. Nucl. Cardiol. 22, 141–157 (2015). https://doi.org/10.1007/s12350-014-9960-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-014-9960-y

Keywords

Navigation