Skip to main content

Temporal Genetic Monitoring of Declining and Invasive Wildlife Populations: Current State and Future Directions

  • Chapter
  • First Online:
Problematic Wildlife

Abstract

Human actions constantly change the environmental conditions for other organisms, which are inevitably affected by these rapid shifts. We need to monitor the changes we induce in the populations, whether they are for conservation purposes of species which become threatened or for measuring and controlling the spread of invasive species. Genetic methods developed in recent decades provide valuable tools for monitoring changes in populations over time. With these methods knowledge, which is difficult or even impossible to gain otherwise, is gained. Genetic monitoring can provide crucial information on genetic diversity, connectivity, fitness, and viability of populations. Furthermore, the origins of invasive species, their expansion routes, and predictions of future evolutionary trajectories can be resolved. In this chapter, methods and implications of temporal genetic monitoring are presented through case studies of declining populations and invasive species. The use of museum and other biological collections in temporal genetic monitoring is discussed, and future directions, especially in terms of measuring adaptive genetic variation, are suggested. There is great and unrealized potential in temporal genetic monitoring and this chapter hopefully encourages its wider application in wildlife management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allendorf FW, Leary RF (1986) Heterozygosity and fitness in natural populations of animals. In: Soule M (ed) Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland, pp 57–76

    Google Scholar 

  • Allendorf FW, Lundquist L (2003) Introduction: population biology, evolution and control of invasive species. Conserv Biol 17:24–30

    Article  Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709

    Article  CAS  PubMed  Google Scholar 

  • Altwegg R, Ringsby TH, Saether BE (2000) Phenotypic correlates and consequences of dispersal in a metapopulation of house sparrows Passer domesticus. J Anim Ecol 69:762–770

    Article  Google Scholar 

  • Anderson TR (2006) The ubiquitous house sparrow: from genes to populations. Oxford University Press, Oxford

    Book  Google Scholar 

  • Antao T, Pérez-Figueroa A, Luikart G (2011) Early detection of population declines: high power of genetic monitoring using effective population size estimators. Evol Appl 4:144–154

    Article  PubMed  Google Scholar 

  • Athrey G, Lindsay DL, Lance RF, Leberg PL (2011) Crumbling diversity: comparison of historical archived and contemporary natural populations indicate reduced genetic diversity and increasing genetic differentiation in the golden-cheeked warbler. Conserv Genet 12:1345–1355

    Article  Google Scholar 

  • Austin JJ, Melville J (2006) Incorporating historical museum specimens into molecular systematic and conservation genetics research. Mol Ecol Notes 6:1089–1092

    Article  CAS  Google Scholar 

  • Avise JC (2004) Molecular markers, natural history, and evolution, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Barrett RDH, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44

    Article  PubMed  Google Scholar 

  • Beacham TD, Lapointe M, Candy JR, Miller KM, Withler RE (2004) DNA in action: rapid application of DNA variation to sockeye salmon fisheries management. Conserv Genet 5:411–416

    Article  CAS  Google Scholar 

  • Beja-Pereira A, Oliviera R, Alves PC, Schwartz MK, Luikart G (2009) Advancing ecological understandings through technological transformations in noninvasive genetics. Mol Ecol Res 9:1279–1301

    Article  Google Scholar 

  • Berg DJ, Garton DW, MacIsaac HJ, Panov VE, Telesh IV (2002) Changes in genetic structure of North American Bythotrephes populations following invasion from Lake Ladoga, Russia. Freshw Biol 47:275–282

    Article  Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  CAS  PubMed  Google Scholar 

  • Briskie JV, MacIntosh MM (2004) Hatching failure increases with severity of population bottlenecks in birds. Proc Natl Acad Sci U S A 101:558–561

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B (2009) Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10:195–205

    Article  CAS  PubMed  Google Scholar 

  • Ciosi M, Miller NJ, Toepfer S, Estoup A, Guillemaud T (2010) Stratified dispersal and increasing genetic variation during the invasion of Central Europe by the western corn rootworm, Diabrotica virgifera virgifera. Evol Appl 4:54–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke GM (2000) Inferring demography from genetics: a case study of the endangered golden sun moth, Synemon plan. In: Young AG, Clarke GM (eds) Genetics, demography and viability of fragmented populations. Cambridge University Press, Cambridge, pp 213–226

    Chapter  Google Scholar 

  • Coltman DW, O’Donoghue P, Jorgenson JT, Hogg JT, Strobeck C, Festa-Bianchet M (2003) Undesirable evolutionary consequences of trophy hunting. Nature 426:655–658

    Article  CAS  PubMed  Google Scholar 

  • Crow JF, Aiko K (1984) Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. Proc Natl Acad Sci U S A 19:6073–6077

    Article  Google Scholar 

  • De Laet J, Summers-Smith JD (2007) The status of the urban house sparrow Passer domesticus in north-western Europe: a review. J Ornithol 148(Suppl 2):275–278

    Article  Google Scholar 

  • Dejean T, Valentini A, Miquel C, Taberlet P, Bellemain E et al (2012) Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J Appl Ecol 49:953–959

    Article  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  CAS  PubMed  Google Scholar 

  • Duncan RP, Blackburn TM, Sol D (2003) The ecology of bird introductions. Annu Rev Ecol Evol Syst 34:71–98

    Article  Google Scholar 

  • Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130

    Article  PubMed  Google Scholar 

  • Ficetola GF, Miaud C, Pompanon F, Taberlet P (2008) Species detection using environmental DNA from water samples. Biol Lett 4:423–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Frankham R, Ralls K (1998) Inbreeding leads to extinction. Nature 392:441–442

    Article  CAS  Google Scholar 

  • Genetic monitoring for managers. http://www.fws.gov/alaska/gem/mainPage_1.htm

  • Goyal M (2005) M.Sc. Dissertation, Preliminary survey of house sparrow (Passer domesticus) in three different areas of Haridwar, Uttaranchal. Wildlife Institute of India, Dehradun. Gurukul Kangri University, Haridwar

    Google Scholar 

  • Groombridge JJ, Jones CG, Bruford MW, Nichols RA (2000) ‘Ghost’ alleles of the Mauritius kestrel. Nature 403:616

    Article  CAS  PubMed  Google Scholar 

  • Hall LM, Willcox MS, Jones DS (1997) Association of enzyme inhibition with methods of museum skin preparation. Biotechniques 22:928–934

    CAS  PubMed  Google Scholar 

  • Hansen MM, Olivieri I, Waller DM, Nielsen EE, The GeM Working Group (2012) Monitoring adaptive genetic responses to environmental change. Mol Ecol 21:1311–1329

    Google Scholar 

  • Hartl DL, Clark AG (2007) Principles of population genetics, 4th edn. Sinauer, Sunderland

    Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc B 270:96–99

    Article  Google Scholar 

  • Hitt NP, Frissell CA, Muhlfeld CC, Allendorf FW (2003) Spread of hybridization between native westslope cutthroat trout, Oncorhynchus clarkii lewisi, and nonnative rainbow trout, Oncorhynchus mykiss. Can J Fish Aquat Sci 60(12):1440–1451

    Article  Google Scholar 

  • Hoban S, Arntzen JA, Bruford MW, Godoy JA, Hoelzel RA, Segelbacher G, Vilà C, Bertorelle G (2014) Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evol Appl 7:984–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hole DG, Whittingham MJ, Bradbury RB, Anderson GQA, Lee PLM, Wilson JD (2002) Widespread local house sparrow extinctions. Nature 418:139–149

    Article  Google Scholar 

  • Honnay O, Jacquemyn H, Van Looy K, Vandepitte K, Breyne P (2009) Temporal and spatial genetic variation in a metapopulation of the annual Erysimum cheiranthoides on stony river banks. J Evol 97:131–141

    Google Scholar 

  • IUCN (2010) IUCN red list of threatened species. Version 2010.4. http://www.iucnredlist.org

  • Ivkosic SA, Gorman J, Lemic D, Mikac KM (2014) Genetic monitoring of western corn rootworm Coleoptera: Chrysomelidae) populations on a microgeographic scale. Environ Entomol 43:804–818

    Article  CAS  PubMed  Google Scholar 

  • Jackson JA, Laikre L, Baker CS, Kendall KC (2012) Guidelines for collecting and maintaining archives for genetic monitoring. Conserv Genet Resour 4:527–536

    Google Scholar 

  • Jensen H, Steinsland I, Ringsby TH, Saether B-E (2008) Evolutionary dynamics of a sexual ornament in the house sparrow (Passer domesticus): the role of indirect selection within and between sexes. Evolution 62:1275–1293

    Article  PubMed  Google Scholar 

  • Johnson JA, Gilbert M, Virania MZ, Asima M, Mindell DP (2008) Temporal genetic analysis of the critically endangered oriental white-backed vulture in Pakistan. Biol Conserv 141:2403–2409

    Article  Google Scholar 

  • Jolly MT, Maitland PS, Genner MJ (2011) Genetic monitoring of two decades of hybridization between allis shad (Alosa alosa) and twaite shad (Alosa fallax). Conserv Genet 12:1087–1100

    Article  Google Scholar 

  • Kashtan N, Noor E, Alon U (2007) Varying environments can speed up evolution. Proc Natl Acad Sci U S A 104:13711–13716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kekkonen J, Brommer JE (2014) Reducing the loss of genetic diversity associated with assisted colonization-like introductions of animals. Curr Zool. http://www.currentzoology.org/site_media/onlinefirst/downloadable_file/2014/11/19/Kekkonen.pdf

  • Kekkonen J, Hanski IK, Jensen H, Väisänen RA, Brommer JE (2011) Increased genetic differentiation in house sparrows after a strong population decline: from panmixia towards structure in a common bird. Biol Conserv 144:2931–2940

    Article  Google Scholar 

  • Koskinen MT, Sundell P, Piironen J, Primmer CR (2002) Genetic assessment of spatiotemporal evolutionary relationships and stocking effects in grayling (Thymallus thymallus, Salmonidae). Ecol Lett 5:193–205

    Article  Google Scholar 

  • Kruszewicz AG, Kruszewicz AH, Pawiak R, Mazurkiewicz M (1995) Bacteria in House Sparrow (Passer domesticus) and Tree Sparrow (Passer montanus) nestlings: occurrence and influence on growth and mortality. In: Pinowski J, Kavanagh B, Pinowska B (eds) Nestling mortality of granivorous birds due to microorganisms and toxic substances: Synthesis. PWN – Polish Scientific Press, Warsaw, pp 267–282

    Google Scholar 

  • Laikre L, Allendorf FW, Aroner LC, Baker CS, Gregovich DP, Hansen MM, Jackson JA, Kendall KC, McKelvey K, Neel MC, Ryman N, Schwartz MK, Shortbull R, Stetz JB, Tallmon DA, Taylor BL, Vojta CD, Waller DM, Waples RS (2010) Neglect of genetic diversity in implementation of the conservation on biological diversity. Conserv Biol 24:86–88

    Article  PubMed  Google Scholar 

  • Larsson LC, Charlier J, Laikre L, Ryman N (2009) Statistical power for detecting genetic divergence—organelle versus nuclear markers. Conserv Genet 10:1255–1264

    Article  Google Scholar 

  • Leberg P (2005) Genetic approaches for estimating the effective size of populations. J Wildl Manage 69:1385–1399

    Article  Google Scholar 

  • Leonard JA (2008) Ancient DNA applications for wildlife conservation. Mol Ecol 17:4186–4196

    Article  CAS  PubMed  Google Scholar 

  • Lettieri T (2006) Recent applications of DNA microarray technology to toxicology and ecotoxicology. Environ Health Perspect 114:4–9

    CAS  PubMed  Google Scholar 

  • Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell, Malden

    Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the World’s Worst Invasive Alien Species A selection from the Global Invasive Species Database. Published by The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), 12pp. First published as special lift-out in Aliens 12, December 2000. Updated and reprinted version: November 2004

    Google Scholar 

  • Luikart G, Cornuet J-M, Allendorf FW (1999) Temporal changes in allele frequencies provide estimates of population bottleneck size. Conserv Biol 13:523–530

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • Matocq MD, Villablanca FX (2001) Low genetic diversity in an endangered species: recent or historic pattern? Biol Conserv 98:61–68

    Article  Google Scholar 

  • McCarthy M (2003) Wood Pigeons’ grain diet linked to the demise of House Sparrows. The Independent, 3rd September

    Google Scholar 

  • Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, Guigo R, Dermitzaki ET (2010) Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464:773–777

    Article  CAS  PubMed  Google Scholar 

  • Morin PA, Luikart G, Wayne RK, Grp WSNP (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216

    Article  Google Scholar 

  • Mount DW (2001) Bioinformatics—sequence and genome analysis. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Murgui E, Macias A (2010) Changes in the House Sparrow Passer domesticus in Valencia (Spain) from 1998 to 2008. Bird Study 57:281–288

    Article  Google Scholar 

  • Nielsen EE, Hemmer-Hansen J, Poulsen N, Loeschcke V, Moen T, Johansen T, Mittelholzer C, Taranger G-L, Ogden R, CarvalhoGR (2009) Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua). BMC Evolutionary Biology 9:276

    Google Scholar 

  • Ortego J, Yannic G, Shafer AB, Mainguy J, Festa-Bianchet M, Coltman D, Cöte SD (2011) Temporal dynamics of genetic variability in a mountain goat (Oreamnos americanus) population. Mol Ecol 20:1601–1611

    Article  PubMed  Google Scholar 

  • Ou W, Takekawa S, Yamada T, Terada C, Uno H, Nagata J, Masuda R, Kaji K, Saitoh T (2014) Temporal change in the spatial genetic structure of a sika deer population with an expanding distribution range over a 15-year period. Popul Ecol 56:311–325

    Article  Google Scholar 

  • Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma R, Hedrick PW (2010) Conservation genetics in transition to conservation genomics. Trends Genet 26:177–187

    Article  CAS  PubMed  Google Scholar 

  • Palmé A, Laikre L, Ryman N (2013) Monitoring reveals two genetically distinct brown trout populations remaining in stable sympatry over 20 years in tiny mountain lakes. Conserv Genet 14:795–808

    Article  Google Scholar 

  • Paulus M, Teubner D, Hochkirch A, Veith M (2014) Journey into the past: using cryogenically stored samples to reconstruct the invasion history of the quagga mussel (Dreissena rostriformis) in German river systems. Biol Invasions 16:2591–2597

    Article  Google Scholar 

  • Pichler FB, Baker CS (2000) Loss of genetic diversity in the endemic Hector’s dolphin due to fisheries-related mortality. Proc R Soc B 267(1438):97–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan U, Hadley EA, Mountain JL (2005) Detecting past population bottlenecks using temporal genetic data. Mol Ecol 14:2915–2922

    Article  CAS  PubMed  Google Scholar 

  • Reding DM, Freed LA, Cann RL, Fleischer RC (2010) Spatial and temporal patterns of genetic diversity in an endangered Hawaiian honeycreeper, the Hawaii Akepa (Loxops coccineus coccineus). Conserv Genet 11:225–240

    Article  CAS  Google Scholar 

  • Reed DH, Frankham R (2003) The correlation between population fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Rollins LA, Woolnough AP, Wilton AN, Sinclair R, Sherwin WB (2009) Invasive species can’t cover their tracks: using microsatellites to assist management of starling (Sturnus vulgaris) populations in Western Australia. Mol Ecol 18:1560–1573

    Article  PubMed  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    Article  PubMed  Google Scholar 

  • Ryman N, Utter F, Hindar K (1995) Introgression, supportive breeding, and genetic conservation. In: Ballou JD et al (eds) Population management for survival and recovery. Columbia University Press, New York, pp 341–365

    Google Scholar 

  • Ryman N, Palm S, André C, Carvalho G, Dahlgren T, Jorde PE, Laikre L, Larsson L, Palmè A, Ruzzante D (2006) Power for detecting genetic divergence: differences between statistical methods and marker loci. Mol Ecol 15:255–261

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughmann S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Sarre SD, Georges A (2009) Genetics in conservation and wildlife management: a revolution since Caughley. Wildl Res 36:70–80

    Article  CAS  Google Scholar 

  • Sax DF, Stachowicz JJ, Brown JH, Dawson MN, Bruno JF, Gaines SD, Grosberg RG, Hastings A, Holt RD, Mayfield MM, O’Connor MI, Rice WM (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22:466–471

    Article  Google Scholar 

  • Schwartz MK, Pilgrim KL, McKelvey KS, Lindquist EL, Claar JJ, Loch S, Ruggiero LF (2004) Hybridization between Canada lynx and bobcats: genetic results and management implications. Conserv Genet 5:349–355

    Article  CAS  Google Scholar 

  • Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33

    Article  PubMed  Google Scholar 

  • Sefc KM, Payne RB, Sorenson MD (2003) Microsatellite amplification from museum feather samples: effects of fragment size and template concentrations on genotyping errors. Auk 120:982–989

    Article  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  • Serbezov D, Jorde PE, Bernatchez L, Olsen EM, Vøllestad LA (2012) Short-term genetic changes: evaluating effective population size estimates in a comprehensively described brown trout (Salmo trutta) population. Genetics 191:579–592

    Article  PubMed  PubMed Central  Google Scholar 

  • Siriwardena G, Robinson R, Crick H (2002) Status and population trends of the House Sparrow Passer domesticus in Great Britain. In: Crick H, Robinson R, Appleton G, Clark N, Rickard A (eds) Investigation into the causes of the decline of Starlings and House Sparrows in Great Britain. BTO/DEFRA, Bristol. BTO research report number 290

    Google Scholar 

  • Soulé ME (1987) Viable populations for conservation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol Ecol 9:1517–1528

    Article  CAS  PubMed  Google Scholar 

  • Stepien CA, Brown JE, Neilson ME, Tumeo MA (2005) Genetic diversity of invasive species in the Great Lakes versus their Eurasian source populations: insights for risk analysis. Risk Anal 25:1043–1060

    Article  PubMed  Google Scholar 

  • Stetz JB, Kendall KC, Vojta CD, Genetic Monitoring (GeM) Working Group (2011) Genetic monitoring for managers: a new online resource. J Fish Wildl Man 2:216–19

    Google Scholar 

  • Summers-Smith JD (1963) The house sparrow. Collins, London

    Google Scholar 

  • Summers-Smith JD (1988) The sparrows. T. & A.D. Poyser, Staffordshire

    Google Scholar 

  • Summers-Smith JD (1999) Current status of the house sparrow in Great Britain. Br Wildl 10:381–386

    Google Scholar 

  • Summers-Smith D (2003) Decline of the House sparrow: a review. Br Birds. www.ndoc.org.uk

  • Tallmon D, Gregovich D, Waples RS, Baker CS, Jackson J, Taylor BL, Archer E, Martien KK, Allendorf FW, Schwartz MK (2010) When are genetic methods useful for estimating contemporary abundance and detecting population trends? Mol Ecol Res 10:684–692

    Article  Google Scholar 

  • Therkildsen NO, Hemmer-Hansen J, Hedeholm RB, Wisz MS, Pampoulie C, Meldrup D, Bonanomi S, Retzel A, Olsen SM, Nielsen EE (2013) Spatiotemporal SNP analysis reveals pronounced biocomplexity at the Northern range margin of Atlantic cod Gadus morhua. Evol Appl 6:690–705

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M, Gilbert MTP, Orlando L, Willerslev E (2012) Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol 21:2565–2573

    Article  CAS  PubMed  Google Scholar 

  • Tokarska M, Kawalko A, Wójcik JM, Pertoldi C (2009) Genetic variability in the European bison (Bison bonasus) population from BiaÅ‚owiezË™a forest over 50 years. Biol J Linn Soc 97:801–809

    Article  Google Scholar 

  • Tracy LN, Jamieson IG (2011) Historic DNA reveals contemporary population structure results from anthropogenic effects, not pre-fragmentation patterns. Conserv Genet 12:517–526

    Article  Google Scholar 

  • Tufto J, Ringsby TH, Dhondt AA, Adriaensen F, Matthysen E (2005) A parametric model for estimation of dispersal patterns applied to five passerine spatially structured populations. Am Nat 165:13–26

    Article  Google Scholar 

  • Väisänen R (2003) Linnut 38(3):26–27

    Google Scholar 

  • Valkama J, Vepsäläinen V, Lehikoinen A (2011) Suomen III Lintuatlas. Luonnontieteellinen keskusmuseo ja ympäristöministeriö. http://atlas3.lintuatlas.fi (viitattu [15.12.2014]) ISBN 978-952-10-6918-5

  • Van Straalen NM, Roelofs D (2006) An introduction to ecological genomics. Oxford University Press, Oxford

    Google Scholar 

  • Varvio SL, Chakraborty R, Nei M (1986) Genetic variation in subdivided populations and conservation genetics. Heredity 57:189–198

    Article  PubMed  Google Scholar 

  • Vincent K (2005) PhD Thesis, Investigating the causes of the decline of the urban House Sparrow Passer domesticus population in Britain. De Montfort University, Great Britain

    Google Scholar 

  • Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends Ecol Evol 22:634–642

    Article  PubMed  Google Scholar 

  • Wares JP, Hughes AR, Grosberg RK (2005) Mechanisms that drive evolutionary change: insights from species introductions and invasions. In: Species invasions: insights into ecology, evolution and biogeography. Sinauer, Sunderland

    Google Scholar 

  • Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers Distrib 14:569–580

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank the two anonymous referees who really put the time and effort in commenting this chapter which improved it remarkably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaana Kekkonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kekkonen, J. (2016). Temporal Genetic Monitoring of Declining and Invasive Wildlife Populations: Current State and Future Directions. In: Angelici, F. (eds) Problematic Wildlife. Springer, Cham. https://doi.org/10.1007/978-3-319-22246-2_13

Download citation

Publish with us

Policies and ethics