Skip to main content

A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems

  • Chapter
  • First Online:
Biogas Science and Technology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 151))

Abstract

Microbiological biogas upgrading could become a promising technology for production of methane (CH4). This is, storage of irregular generated electricity results in a need to store electricity generated at peak times for use at non-peak times, which could be achieved in an intermediate step by electrolysis of water to molecular hydrogen (H2). Microbiological biogas upgrading can be performed by contacting carbon dioxide (CO2), H2 and hydrogenotrophic methanogenic Archaea either in situ in an anaerobic digester, or ex situ in a separate bioreactor. In situ microbiological biogas upgrading is indicated to require thorough bioprocess development, because only low volumetric CH4 production rates and low CH4 fermentation offgas content have been achieved. Higher volumetric production rates are shown for the ex situ microbiological biogas upgrading compared to in situ microbiological biogas upgrading. However, the ex situ microbiological biogas upgrading currently suffers from H2 gas liquid mass transfer limitation, which results in low volumetric CH4 productivity compared to pure H2/CO2 conversion to CH4. If waste gas utilization from biological and industrial sources can be shown without reduction in volumetric CH4 productivity, as well as if the aim of a single stage conversion to a CH4 fermentation offgas content exceeding 95 vol% can be demonstrated, ex situ microbiological biogas upgrading with pure or enrichment cultures of methanogens could become a promising future technology for almost CO2-neutral biomethane production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106(6):1704–1709

    Article  CAS  Google Scholar 

  2. Howarth RW (2014) A bridge to nowhere: methane emissions and the greenhouse gas footprint of natural gas. Energy Sci Eng 2(2):47–60

    Article  CAS  Google Scholar 

  3. Marshall J, Armour KC, Scott JR, Kostov Y, Hausmann U, Ferreira D, Shepherd TG, Bitz CM (2014) The ocean’s role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Philos Trans R Soc Math Phys Eng Sci 372(2019):20130040

    Article  Google Scholar 

  4. Siegl S, Laaber M, Holubar P (2011) Green electricity from Biomass, part I: environmental impacts of direct life cycle emissions. Waste Biomass Valorization 2(3):267–284

    Article  CAS  Google Scholar 

  5. Siegl S, Laaber M, Holubar P (2012) Green electricity from biomass, part II: environmental impacts considering avoided burdens from replacing the conventional provision of additional functions. Waste Biomass Valorization 3(1):1–21

    Article  CAS  Google Scholar 

  6. Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35(5):1633–1645

    Article  CAS  Google Scholar 

  7. Luo G, Angelidaki I (2012) Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. Biotechnol Bioeng 109(11):2729–2736

    Article  CAS  Google Scholar 

  8. Yang L, Ge X, Wan C, Yu F, Li Y (2014) Progress and perspectives in converting biogas to transportation fuels. Renew Sustain Energy Rev 40:1133–1152

    Google Scholar 

  9. Rittmann S, Seifert A, Herwig C (2015) Essential prerequisites for successful bioprocess development of biological CH4 production from CO2 and H2. Crit Rev Biotechnol 35(2):141–151

    Google Scholar 

  10. Bernacchi S, Seifert AH, Krajete A, Rittmann SK-MR (2013) Anwendungen der Methanogenese zur Biogasveredelung und Stromspeicherung presented at the biogas 13. St. Pölten, Austria, 04 Dec 2013

    Google Scholar 

  11. Rittmann SK-MR, Seifert AH, Krajete A (2014) Biomethanisierung—ein Prozess zur Ermöglichung der Energiewende? BIOspektrum 20(7):816–817

    Article  CAS  Google Scholar 

  12. Offre P, Spang A, Schleper C (2013) Archaea in biogeochemical cycles. Annu Rev Microbiol 67(1):437–457

    Article  CAS  Google Scholar 

  13. Cavicchioli R (2011) Archaea–timeline of the third domain. Nat Rev Microbiol 9(1):51–61

    Article  CAS  Google Scholar 

  14. Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–591

    Article  CAS  Google Scholar 

  15. Thauer RK, Kaster A-K, Goenrich M, Schick M, Hiromoto T, Shima S (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79:507–536

    Article  CAS  Google Scholar 

  16. Schönheit P, Moll J, Thauer RK (1980) Growth parameters (K s, μmax, Y s) of Methanobacterium thermoautotrophicum. Arch Microbiol 127(1):59–65

    Article  Google Scholar 

  17. Rittmann SK-MR, Lee HS, Lim JK, Kim TW, Lee J-H, Kang SG (2015) One-carbon substrate-based biohydrogen production: Microbes, mechanism, and productivity. Biotechnol Adv 33(1):165–177

    Article  CAS  Google Scholar 

  18. Rittmann S, Holubar P (2014) Rapid extraction of total RNA from an anaerobic sludge biocoenosis. Folia Microbiol (Praha) 59(2):127–132

    Article  CAS  Google Scholar 

  19. Weiland P (2003) Production and energetic use of biogas from energy crops and wastes in Germany. Appl Biochem Biotechnol 109(1–3):263–274

    Article  CAS  Google Scholar 

  20. Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189

    Article  CAS  Google Scholar 

  21. Rittmann S, Seifert A, Herwig C (2012) Quantitative analysis of media dilution rate effects on Methanothermobacter marburgensis grown in continuous culture on H2 and CO2. Biomass Bioenergy 36:293–301

    Article  CAS  Google Scholar 

  22. Seifert AH, Rittmann S, Bernacchi S, Herwig C (2013) Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis. Bioresour Technol 136:747–751

    Article  CAS  Google Scholar 

  23. Seifert AH, Rittmann S, Herwig C (2014) Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis. Appl Energy 132:155–162

    Article  CAS  Google Scholar 

  24. Nishimura N, Kitaura S, Mimura A, Takahara Y (1992) Cultivation of thermophilic methanogen KN-15 on H2-CO2 under pressurized conditions. J Ferment Bioeng 73(6):477–480

    Article  CAS  Google Scholar 

  25. Luo G, Johansson S, Boe K, Xie L, Zhou Q, Angelidaki I (2012) Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor. Biotechnol Bioeng 109(4):1088–1094

    Article  CAS  Google Scholar 

  26. Drake HL, Daniel SL, Küsel K, Matthies C, Kuhner C, Braus-Stromeyer S (1997) Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities? BioFactors Oxf Engl 6(1):13–24

    Article  CAS  Google Scholar 

  27. Luo G, Angelidaki I (2013) Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: process performance and microbial insights. Appl Microbiol Biotechnol 97(3):1373–1381

    Article  CAS  Google Scholar 

  28. Wise DL, Cooney CL, Augenstein DC (1978) Biomethanation: Anaerobic fermentation of CO2, H2 and CO to methane. Biotechnol Bioeng 20(8):1153–1172

    Article  CAS  Google Scholar 

  29. Strevett KA, Vieth RF, Grasso D (1995) Chemo-autotrophic biogas purification for methane enrichment: mechanism and kinetics. Chem Eng J Biochem Eng J 58(1):71–79

    Article  CAS  Google Scholar 

  30. Martin MR, Fornero JJ, Stark R, Mets L, Angenent LT (2013) A single-culture bioprocess of Methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 by conversion with H2. Archaea 2013:e157529

    Article  Google Scholar 

  31. Pauss A, Andre G, Perrier M, Guiot SR (1990) Liquid-to-gas mass transfer in anaerobic processes: inevitable transfer limitations of methane and hydrogen in the biomethanation process. Appl Environ Microbiol 56(6):1636–1644

    CAS  Google Scholar 

  32. Bensmann A, Hanke-Rauschenbach R, Heyer R, Kohrs F, Benndorf D, Reichl U, Sundmacher K (2104) Biological methanation of hydrogen within biogas plants: A model-based feasibility study. Appl Energy 134:413–425

    Google Scholar 

  33. Sonesson M (2013) Methane yields from anaerobic digestion of food waste. Karlstad University, Sweden

    Google Scholar 

  34. Spadiut O, Rittmann S, Dietzsch C, Herwig C (2013) Dynamic process conditions in bioprocess development. Eng Life Sci 13(1):88–101

    Article  CAS  Google Scholar 

  35. Bernacchi S, Rittmann S, Seifert AH, Krajete A, Herwig C (2014) Experimental methods for screening parameters influencing the growth to product yield (Y(x/CH4)) of a biological methane production (BMP) process performed with Methanothermobacter marburgensis. AIMS Bioeng. 1(2):72–86

    Article  Google Scholar 

  36. Martinez-Porqueras E, Rittmann S, Herwig C (2013) Analysis of H2 to CO2 yield and physiological key parameters of Enterobacter aerogenes and Caldicellulosiruptor saccharolyticus. Int J Hydrog Energy 38(25):10245–10251

    Article  CAS  Google Scholar 

  37. Martinez-Porqueras E, Rittmann S, Herwig C (2012) Biofuels and CO2 neutrality: an opportunity. Biofuels 3(4):413–426

    Article  Google Scholar 

  38. Rittmann S, Herwig C (2012) A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Fact 11(1):115

    Article  CAS  Google Scholar 

  39. Ahring BK, Westermann P (2007) Coproduction of bioethanol with other biofuels. Adv Biochem Eng Biotechnol 108:289–302

    CAS  Google Scholar 

  40. Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77(1):23–35

    Article  CAS  Google Scholar 

  41. Burkhardt M, Busch G (2013) Methanation of hydrogen and carbon dioxide. Appl Energy 111:74–79

    Article  CAS  Google Scholar 

  42. Lee JC, Kim JH, Chang WS, Pak D (2012) Biological conversion of CO2 to CH4 using hydrogenotrophic methanogen in a fixed bed reactor. J Chem Technol Biotechnol 87(6):844–847

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ruth-Sophie Taubner and Günther Bochmann are gratefully acknowledged for proof reading and critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon K.-M. R. Rittmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rittmann, S.KM.R. (2015). A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems. In: Guebitz, G., Bauer, A., Bochmann, G., Gronauer, A., Weiss, S. (eds) Biogas Science and Technology. Advances in Biochemical Engineering/Biotechnology, vol 151. Springer, Cham. https://doi.org/10.1007/978-3-319-21993-6_5

Download citation

Publish with us

Policies and ethics