Skip to main content

Dual Energy CT in Liver Tumors

  • Chapter
Dual Energy CT in Oncology

Abstract

DECT applications in liver imaging are based on two distinct capabilities: (1) material differentiation and (2) material identification and quantification. The possibility to obtain different material-specific (iodine mapping and virtual unenhanced (VU) images) or energy-specific (virtual monoenergetic images) datasets during a single scan may provide several advantages in oncological imaging. The calculation of VU images may replace the acquisition of pre-contrast images, therefore substantially lowering the radiation burden. Iodine maps can be useful to improve visualization and detection of contrast uptake, potentially increasing the diagnostic confidence for assessment of lesion contrast enhancement. Virtual monoenergetic images at low energy levels are beneficial in increasing image contrast, thus potentially improving the visualization and assessment of both hypovascular and hypervascular liver lesions. All these applications, if routinely applied, could improve the safety of CT examinations by reducing the radiation dose and contrast medium amount administered, while at the same time enhancing the detection and characterization of liver lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Cecco CN, Darnell A, Rengo M, Muscogiuri G, Bellini D, Ayuso C, Laghi A (2012) Dual-energy CT: oncologic applications. AJR Am J Roentgenol 199(5 Suppl):S98–S105

    Article  PubMed  Google Scholar 

  2. Marin D, Boll DT, Mileto A, Nelson RC (2014) State of the art: dual-energy CT of the abdomen. Radiology 271(2):327–342

    Article  PubMed  Google Scholar 

  3. De Cecco CN, Buffa V, Fedeli S, Luzietti M, Vallone A, Ruopoli R, Miele V et al (2010) Dual energy CT (DECT) of the liver: conventional virtual unenhanced images. Eur Radiol 20:2870–2875

    Article  PubMed  Google Scholar 

  4. Zhang LJ, Peng J, Wu SY, Wang ZJ, Wu XS, Zhou CS, Ji XM, Lu GM (2010) Liver virtual non-enhanced CT with dual-source, dual-energy CT: a preliminary study. Eur Radiol 20:2257–2264

    Article  PubMed  Google Scholar 

  5. De Cecco CN, Buffa V, Fedeli S, Vallone A, Ruopoli R, Luzietti M, Miele V et al (2010) Preliminary experience with dual energy CT (DECT) of the abdomen: real versus virtual non-enhanced images of the liver. Radiol Med 115:1258–1266

    Article  PubMed  Google Scholar 

  6. De Cecco CN, Darnell A, Macías N, Ayuso JR, Rodríguez S, Rimola J, Pagés M, García-Criado A, Rengo M, Laghi A, Ayuso C (2013) Virtual unenhanced images of the abdomen with second-generation dual-source dual-energy computed tomography: image quality and liver lesion detection. Invest Radiol 48(1):1–9

    Article  PubMed  Google Scholar 

  7. De Cecco CN, Spearman J, Schoepf UJ, Canstein C, Meinel FG, Hardie A (2014) Virtual unenhanced images of the abdomen with 3rd generation dual-source dual-energy CT and 3rd generation iterative reconstruction: image quality, attenuation and radiation dose. RSNA 2014, Chicago

    Google Scholar 

  8. Lv P, Lin XZ, Li J, Li W, Chen K (2011) Differentiation of small hepatic hemangioma from small hepatocellular carcinoma: recently introduced spectral CT method. Radiology 259(3):720–729

    Article  PubMed  Google Scholar 

  9. Kim T, Federle MP, Baron RL, Peterson MS, Kawamori Y (2001) Discrimination of small hepatic hemangiomas from hypervascular malignant tumors smaller than 3 cm with three-phase helical CT. Radiology 219(3):699–706

    Article  CAS  PubMed  Google Scholar 

  10. Marin D, Nelson RC, Samei E et al (2009) Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection – initial clinical experience. Radiology 251:771–779

    Article  PubMed  Google Scholar 

  11. Altenbernd J, Heusner TA, Ringelstein A, Ladd SC, Forsting M, Antoch G (2011) Dual-energy-CT of hypervascular liver lesions in patients with HCC: investigation of image quality and sensitivity. Eur Radiol 21:738–743

    Article  PubMed  Google Scholar 

  12. Park JK, Kim SH, Park HS, Kim GH, Lee JY et al (2011) Added value of 80 kVp images to averaged 120 kVp images in the detection of hepatocellular carcinoma in liver transplantation candidates using dual-source dual-energy MDCT: results of JAFROC analysis. Eur J Radiol 80:e76–e85

    Article  PubMed  Google Scholar 

  13. Robinson E, Babb J, Chandarana H, Macari M (2010) Dual source dual energy MDCT comparison of 80 kVp and weighted average 120 kVp data for conspicuity of hypo-vascular liver metastases. Invest Radiol 45:413–418

    PubMed  Google Scholar 

  14. Morgan DE (2014) Dual-energy CT, of the abdomen. Abdom Imaging 39(1):108–134

    Article  PubMed  Google Scholar 

  15. Yu L, Leng S, McCollough CH (2012) Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 199(5 Suppl):S9–S15

    Article  PubMed  Google Scholar 

  16. Grant KL, Flohr TG, Krauss B, Sedlmair M, Thomas C, Schmidt B (2014) Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Invest Radiol 49(9):586–592

    Article  PubMed  Google Scholar 

  17. De Cecco CN, Spearman J, Schoepf UJ, Canstein C, Meinel FG, Hardie A (2014) Value of an advanced image-based technique to calculate virtual monoenergetic CT images using third-generation dual-energy dual-source CT to improve contrast-to-noise ratio in liver examinations. RSNA 2014, Chicago

    Google Scholar 

  18. Albrecht MH, Scholtz JE, Kraft J, Bauer RW, Kaup M, Dewes P, Bucher AM, Burck I, Wagenblast J, Lehnert T, Kerl JM, Vogl TJ, Wichmann JL (2015) Assessment of an advanced monoenergetic reconstruction technique in dual-energy computed tomography of head and neck cancer. Eur Radiol 2015 Feb 14. [Epub ahead of print]

    Google Scholar 

  19. Lv P, Lin XZ, Chen K, Gao J (2012) Spectral CT in patients with small HCC: investigation of image quality and diagnostic accuracy. Eur Radiol 22(10):2117–2124

    Article  PubMed  Google Scholar 

  20. Yamada Y, Jinzaki M, Tanami Y, Abe T, Kuribayashi S (2012) Virtual monochromatic spectral imaging for the evaluation of hypovascular hepatic metastases: the optimal monochromatic level with fast kilovoltage switching dual-energy computed tomography. Invest Radiol 47:292–298

    Article  PubMed  Google Scholar 

  21. Thomas JV, Alexander L, Bolus D, Morgan DE (2011) Evaluation of lesion conspicuity of hepatocellular carcinomas (HCC) in cirrhotics using dual energy spectral MDCT. ARRS Annual Meeting, Chicago

    Google Scholar 

  22. Choi H, Charnsangavej C, de Castro Faria S et al (2004) CT evaluation of the response of gastrointestinal stromal tumors after imatinib mesylate treatment: a quantitative analysis correlated with FDG PET finding. Am J Roentgenol 183:1619–1628

    Article  Google Scholar 

  23. Apfaltrer P, Meyer M, Meier C, Henzler T, Barraza JM, Dinter DJ et al (2012) Contrast-enhanced dual-energy CT of gastrointestinal stromal tumors. Is iodine-related attenuation a potential indicator of tumor response. Invest Radiol 47:65–70

    Article  CAS  PubMed  Google Scholar 

  24. Schlemmer M, Sourbron SP, Schinwald N et al (2011) Perfusion patterns of metastatic gastrointestinal stromal tumor lesion under specific molecular therapy. Eur J Radiol 77:312–318

    Article  PubMed  Google Scholar 

  25. Zhanga LJ, Wub S, Wanga M, Lua L, Chena B, Jin L et al (2012) Quantitative dual energy CT measurements in rabbit VX2 liver tumors: comparison to perfusion CT measurements and histopathological findings. Eur J Radiol 81:1766–1775

    Article  Google Scholar 

  26. Lee SH, Lee JM, Kim KW et al (2011) Dual-energy computed tomography to assess tumor response to hepatic radiofrequency ablation: potential diagnostic values of virtual noncontrast images and iodine maps. Invest Radiol 46:77–84

    Article  PubMed  Google Scholar 

  27. Lee JA, Jeong WK, Kim Y et al (2013) Dual-energy CT to detect recurrent HCC after TACE: initial experience of color-coded iodine CT imaging. Eur J Radiol 82:569–576

    Article  PubMed  Google Scholar 

  28. Chen B, Marin D, Richard S, Husarik D, Nelson R, Samei E (2013) Precision of iodine quantification in hepatic CT: effects of iterative reconstruction with various imaging parameters. AJR Am J Roentgenol 200(5):W475–W482

    Article  PubMed  Google Scholar 

  29. Dai X, Schlemmer HP, Schmidt B et al (2013) Quantitative therapy response assessment by volumetric iodine-uptake measurement: initial experience in patients with advanced hepatocellular carcinoma treated with sorafenib. Eur J Radiol 82(2):327–334

    Article  PubMed  Google Scholar 

  30. Komatsu S, Fukumoto T, Demizu Y et al (2011) Clinical results and risk factors of proton and carbon ion therapy for hepatocellular carcinoma. Cancer 117(21):4890–4904

    Article  CAS  PubMed  Google Scholar 

  31. Qian LJ, Zhu J, Zhuang ZG et al (2012) Differentiation of neoplastic from bland macroscopic portal vein thrombi using dual-energy spectral CT imaging: a pilot study. Eur Radiol 22:2178–2185

    Article  PubMed  Google Scholar 

  32. Zou Y, Silver MD (2009) Analysis of fast kV-switching in dual energy CT using a pre-reconstruction decomposition technique. In: Hsieh J, Samei E, eds. Proceedings of SPIE: medical imaging 2008—physics of medical imaging, vol 6913. SPIE–The International Society for Optic Engineering, Bellingham, p 691313

    Google Scholar 

  33. Christner JA, Kofler JM, McCollough CH (2010) Estimating effective dose for CT using dose–length product compared with using organ doses: consequences of adopting international commission on radiological protection publication 103 or dual-energy scanning. Am J Roentgenol 194:881–889

    Article  Google Scholar 

  34. Schenzle JC, Sommer WH, Neumaier K, Michalski G, Lechel U et al (2010) Dual energy CT of the chest How about the dose? Invest Radiol 45:347–353

    PubMed  Google Scholar 

  35. De Zordo T, von Lutterotti K, Dejaco C, Soegner PF, Frank R et al (2012) Comparison of image quality and radiation dose of different pulmonary CTA protocols on a 128-slice CT: high-pitch dual source CT, dual energy CT and conventional spiral CT. Eur Radiol 22:279–286

    Article  PubMed  Google Scholar 

  36. Bauer RW, Kramer S, Renker M, Schell B, Larson MC et al (2011) Dose and image quality at CT pulmonary angiography – comparison of first and second generation dual-energy CT and 64-slice CT. Eur Radiol 21:2139–2147

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo N. De Cecco MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

De Cecco, C.N., Wichmann, J.L., Muscogiuri, G., Hardie, A., Laghi, A. (2015). Dual Energy CT in Liver Tumors. In: De Cecco, C., Laghi, A., Schoepf, U., Meinel, F. (eds) Dual Energy CT in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-19563-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19563-6_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19562-9

  • Online ISBN: 978-3-319-19563-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics