Skip to main content

Advertisement

Log in

Dual-energy CT of the abdomen

  • Update
  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Although conceived of in the 1970s, practical use of dual-energy CT in the clinical setting did not come to fruition until 2006, and since that time an ever expanding exploration of the technology has been underway. This article will discuss technical aspects of the two commercially available CT scanners, review the recent literature, and provide an organ-based description of abdominal dual-energy CT applications for the practicing radiologist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Megibow AJ, Sahani D (2012) Best practice: implementation and use of abdominal dual-energy CT in routine patient care. AJR 199:71–77

    Article  Google Scholar 

  2. Primak A, Ramirez G, Liu X, et al. (2009) Improved dual energy material discrimination for dual-source CT by means of additional spectral filtration. Med Phys 36(4):1359–1369

    Article  CAS  PubMed  Google Scholar 

  3. Graser A, Johnson T, Chandarana H, et al. (2009) Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol 19:13–23

    Article  PubMed  Google Scholar 

  4. Yu L, Leng S, McCollough CH (2012) Dual-energy CT-based monochromatic imaging. AJR 199:S9–S15

    Article  PubMed  Google Scholar 

  5. Jung DC, Oh YT, Kim MD, et al. (2012) Usefulness of the virtual monochromatic image in dual-energy spectral CT for decreasing renal cyst pseudoenhancement: a phantom study. AJR 199(6):1316–1319

    Article  PubMed  Google Scholar 

  6. Matsumoto K, Jinzaki M, Tanami Y, et al. (2011) Virtual monochromatic spectral imaging with fast kilovoltage switching: Improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology 259(1):257–262

    Article  PubMed  Google Scholar 

  7. Patel BN, Thomas JV, Lockhart ME, Berland LL, Morgan DE (2013) Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast. Clin Radiol 68(2):148–154

    Article  CAS  PubMed  Google Scholar 

  8. Pessis E, Campagna R, Sverzut JM, et al. (2013) Metal artifacts reduction using monochromatic images from spectral CT: evaluation of pedicle screws in patients with scoliosis. Eur J Radiol . doi:10.1016/j.ejrad.2013.02.024

    Google Scholar 

  9. Matsuda I, Akahane M, Sato J, et al. (2012) Precision of the measurement of CT numbers: comparison of dual-energy CT spectral imaging with fast kVp switching and conventional CT with phantoms. Jpn J Radiol 30:34–39

    Article  PubMed  Google Scholar 

  10. Wang L, Liu B, Wu X, et al. (2012) Correlation between CT attenuation value and iodine concentration in vitro: discrepancy between gemstone spectral imaging on single-source dual-energy CT and traditional polychromatic X-ray imaging. J Med Imaging Radiat Oncol 56:379–383

    Article  PubMed  Google Scholar 

  11. Toepker M, Moritz T, Krauss B, et al. (2012) Virtual non-contrast in second-generation, dual-energy computed tomography: reliability of attenuation values. Eur Radiol 81:e398–e405

    Article  Google Scholar 

  12. deCecco C, Buffa V, Fedeli S, et al. (2010) Dual energy CT (DECT) of the liver: conventional versus virtual unenhanced images. Eur Radiol 20:2870–2875

    Article  Google Scholar 

  13. Sahni VA, Shinagare AB, Silverman SG (2013) Virtual unenhanced CT images acquired from dual-energy CT urography: accuracy of attenuation values and variation with contrast material phase. Clin Radiol 68(3):264–271

    Article  CAS  PubMed  Google Scholar 

  14. Kaufmann S, Sauter A, Spira D, et al. (2013) Tin-filter enhanced dual-energy-CT: image quality and accuracy of CT numbers in virtual noncontrast imaging. Acad Radiol 20(5):596–603

    Article  PubMed  Google Scholar 

  15. Zatz LM, Alvarez RE (1977) An inaccuracy in computed tomography: the energy dependence of CT values. Radiology 124:91–97

    CAS  PubMed  Google Scholar 

  16. Graser A, Becker CR, Staehler M, et al. (2010) Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Investig Radiol 45(7):399–405

    Google Scholar 

  17. Mileto A, Mazziotti S, Gaeta M, et al. (2012) Pancreatic dual-source dual-energy CT: is it time to discard unenhanced imaging? Clin Radiol 67:334–339

    Article  PubMed  Google Scholar 

  18. Ascenti G, Mileto A, Gaeta M, et al. (2013) Single-phase dual-energy CT urography in the evaluation of haematuria. Clin Radiol 68(2):e87–e94

    Article  CAS  PubMed  Google Scholar 

  19. Silva AC, Morse BG, Hara AK, et al. (2011) Dual-energy (spectral) CT: applications in abdominal imaging. RadioGraphics 31:1031–1046

    Article  PubMed  Google Scholar 

  20. Henzler T, Fink C, Schoenberg SO, et al. (2012) Dual-energy CT: radiation dose aspects. AJR 199:S16–S25

    Article  PubMed  Google Scholar 

  21. Yu L, Christner JA, Leng S, et al. (2011) Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys 38(12):6371–6379

    Article  PubMed  Google Scholar 

  22. Park J, Chandarana H, Macari M, et al. (2012) Dual-energy computed tomography applications in uroradiology. Curr Urol Rep 13:55–62

    Article  PubMed  Google Scholar 

  23. Primak AN, Fletcher JG, Vrtiska TJ, et al. (2007) Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol 14(12):1441–1447

    Article  PubMed Central  PubMed  Google Scholar 

  24. Stolzmann P, Scheffel H, Rentsch K, et al. (2008) Dual-energy computed tomorgraphy for the differentiation of uric acid stones: ex vivo performance evaluation. Urol Res 36(3–4):133–138

    Article  PubMed  Google Scholar 

  25. Graser A, Johnson TR, Bader M, et al. (2008) Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience. Investig Radiol 43(2):112–119

    Article  Google Scholar 

  26. Thomas C, Krauss B, Ketelsen D, et al. (2010) Differentiation of urinary calculi with dual energy CT: effect of spectral shaping by high energy tin filtration. Investig Radiol 45(7):393–398

    Google Scholar 

  27. Qu M, Ramirez-Giraldo JC, Leng S, et al. (2011) Dual-energy dual-source CT with additional spectral filtration can improve the differentiation of non-uric acid renal stones: an ex vivo phantom study. AJR 196(6):1279–1287

    Article  PubMed Central  PubMed  Google Scholar 

  28. Zilberman J, Ferrandino M, Preminger G, et al. (2010) In vivo determination of urinary stone composition using dual energy computerized tomography with advanced post-acquisition processing. J Urol 184:2354–2359

    Article  CAS  PubMed  Google Scholar 

  29. Fung G, Kawamoto S, Matlaga B, et al. (2012) Differentiation of kidney stones using dual-energy CT with and without a tin filter. AJR 198:1380–1386

    Article  PubMed  Google Scholar 

  30. Wang J, Qu M, Duan X, et al. (2012) Characterisation of urinary stones in the presence of iodinated contrast medium using dual-energy CT: a phantom study. Eur Radiol 22(12):2589–2596

    Article  PubMed  Google Scholar 

  31. Karlo CA, Gnannt R, Winklehner A, et al. (2013) Split-bolus dual-energy CT urography: protocol optimization and diagnostic performance for the detection of urinary stones. Abdom Imaging 38(5):1136–1143

    Google Scholar 

  32. Hartman R, Kawashima A, Takahashi N, et al. (2012) Applications of dual-energy CT in urologic imaging: an update. Radiol Clin N Am 50:191–205

    Article  PubMed  Google Scholar 

  33. Manglaviti G, Tresoldi S, Guerrer C, et al. (2011) In vivo evaluation of the chemical composition of urinary stones using dual-energy CT. AJR 197(1):W76–W83

    Article  PubMed  Google Scholar 

  34. Kulkarni NM, Eisner BH, Pinho DF, et al. (2013) Determination of renal stone composition in phantom and patients using single-source dual-energy computed tomography. J Comput Assist Tomogr 37(1):37–45

    Article  PubMed  Google Scholar 

  35. Chandarana H, Megibow A, Cohen B, et al. (2011) Iodine quantification with dual-energy CT: phantom study and preliminary experience with renal masses. AJR 196:W693–W700

    Article  PubMed  Google Scholar 

  36. Kaza RK, Caoili EM, Cohan RH, et al. (2011) Distinguishing enhancing from nonenhancing renal lesions with fast kilovoltage-switching dual-energy CT. AJR 197:1375–1381

    Article  PubMed  Google Scholar 

  37. Ascenti G, Mileto A, Krauss B, et al. (2013) Distinguishing enhancing from nonenhancing renal masses with dual-source dual-energy CT: iodine quantification versus standard enhancement measurements. Eur Radiol 23(8):2288–2295

    Google Scholar 

  38. Remer EM, Casalino DD, Bishoff JT, et al. (2012) ACR appropriateness criteria on incidentally discovered adrenal mass. Reston: American College of Radiology (ACR). http://guidelines.gov/content.aspx?id=37940.

  39. Gnannt R, Fischer M, Goetti R, et al. (2012) Dual-energy CT for characterization of the incidental adrenal mass: preliminary observations. AJR 198:138–144

    Article  PubMed  Google Scholar 

  40. Ho LM, Marin D, Neville AM, et al. (2012) Characterization of adrenal nodules with dual-energy CT: can virtual unenhanced attenuation values replace true unenhanced attenuation values? AJR 198:840–845

    Article  PubMed  Google Scholar 

  41. Kim YK, Park BK, Kim CK, Park SY (2013) Adenoma characterization: adrenal protocol with dual-energy CT. Radiology 267:155–163

    Article  PubMed  Google Scholar 

  42. Kim JE, Lee JM, Baek JH, et al. (2012) Initial assessment of dual-energy CT in patients with gallstones or bile duct stones: can virtual nonenhanced images replace true nonenhanced images? AJR 198:817–824

    Article  PubMed  Google Scholar 

  43. Fischer MA, Reiner CS, Raptis D, et al. (2011) Quantification of liver iron content with CT—added value of dual-energy. Eur Radiol 21:1727–1732

    Article  PubMed  Google Scholar 

  44. Fischer MA, Gnannt R, Raptis D, et al. (2011) Quantification of liver fat in the presence of iron and iodine. Investig Radiol 46(6):351–358

    Article  CAS  Google Scholar 

  45. Joe E, Kim S, Lee KB, et al. (2012) Feasibility and accuracy of dual-source dual-energy CT for noninvasive determination of hepatic iron accumulation. Radiology 262(1):126–135

    Article  PubMed  Google Scholar 

  46. Artz NS, Hines C, Brunner ST, et al. (2012) Quantification of hepatic steatosis with dual-energy computed tomography. Investig Radiol 47(10):603–610

    Article  Google Scholar 

  47. Zheng X, Ren Y, Phillips WT, et al. (2013) Assessment of hepatic fatty infiltration using spectral computed tomography imaging: a pilot study. J Comput Assist Tomogr 37(2):134–141

    Article  PubMed  Google Scholar 

  48. Qian LJ, Zhu J, Zhuang ZZG, et al. (2012) Differentiation of neoplastic from bland macroscopic portal vein thrombi using dual-energy spectral CT imaging: a pilot study. Eur Radiol 22:2178–2185

    Article  PubMed  Google Scholar 

  49. Altenbernd J, Heusner TA, Ringelstein A, et al. (2011) Dual-energy-CT of hypervascular liver lesions in patients with HCC: investigation of image quality and sensitivity. Eur Radiol 21:738–743

    Article  PubMed  Google Scholar 

  50. Wang Q, Shi G, Liu X, et al. (2013) Optimal contrast of computed tomography portal venography using dual-energy computed tomography. J Comput Assist Tomogr 37(2):142–148

    Article  PubMed  Google Scholar 

  51. Lee JA, Jeong WK, Kim Y, et al. (2013) Dual-energy CT to detect recurrent HCC after TACE: initial experience of color-coded iodine CT imaging. Eur J Radiol 82(4):569–576

    Article  PubMed  Google Scholar 

  52. Lee SH, Lee JM, Kim KW, et al. (2011) Dual-energy computed tomography to assess tumor response to hepatic radiofrequency ablation. Investig Radiol 46(2):77–84

    Article  Google Scholar 

  53. Macari M, Spieler B, Kim D, et al. (2010) Dual-source dual-energy MDCT of pancreatic adenocarcinoma: initial observations with data generated at 80 kVp and at simulated weighted-average 120 kVp. AJR 194:W27–W32

    Article  PubMed  Google Scholar 

  54. Chu AJ, Lee JM, Lee YJ, et al. (2012) Dual-source, dual-energy multidetector CT for the evaluation of pancreatic tumours. British J Radiol 85:e891–e898

    Article  CAS  Google Scholar 

  55. Kaza R, Platt J, Al-Hawary M, et al. (2012) CT enterography at 80 kVp with adaptive statistical iterative reconstruction versus at 120 kVp with standard reconstruction: image quality, diagnostic adequacy, and dose reduction. AJR 198:1084–1092

    Article  PubMed  Google Scholar 

  56. Boellaard T, Henneman O, Streekstra G, et al. (2013) The feasibility of colorectal cancer detection using dual-energy computed tomography with iodine mapping. Clin Radiol 68(8):799–806

    Google Scholar 

  57. Schramm N, Schlemmer M, Englhart E, et al. (2011) Dual energy CT for monitoring targeted therapies in patients with advanced gastrointestinal stromal tumor: initial results. Curr Pharm Biotechnol 12:547–557

    Article  CAS  PubMed  Google Scholar 

  58. Apfaltrer P, Meyer M, Meier C, et al. (2012) Contrast-enhanced dual-energy CT of gastrointestinal stromal tumors. Investig Radiol 47(1):65–70

    Article  CAS  Google Scholar 

  59. Meyer M, Hohenberger P, Apfaltrer P, et al. (2013) CT-based response assessment of advanced gastrointestinal stromal tumor: dual energy CT provides a more predictive imaging biomarker of clinical benefit than RECIST or Choi criteria. Eur J Radiol 82(6):923–928

    Article  CAS  PubMed  Google Scholar 

  60. Mongan J, Rathnayake S. Fu Y, et al. (2013) Extravasated contrast material in penetrating abdominopelvic trauma: dual-contrast dual-energy CT for improved diagnosis-preliminary results in an animal model. Radiology 268(3):738–742

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desiree E. Morgan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, D.E. Dual-energy CT of the abdomen. Abdom Imaging 39, 108–134 (2014). https://doi.org/10.1007/s00261-013-0033-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-013-0033-5

Keywords

Navigation