Skip to main content

Life Extension in Drosophila by Histone Deacetylase Inhibitors

  • Chapter
  • First Online:
Life Extension

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 3))

Abstract

In the last years, epigenetic regulatory mechanisms are increasingly appreciated as central to a diverse array of age-associated processes such as cellular and organismal senescence, genomic instability, and tumorigenesis. Recently, histone deacetylase inhibitors (HDACIs), a novel class of drugs targeting epigenetic pathways, have been proposed as a highly promising type of drugs with anti-aging effects. This chapter presents an overview of the anti-aging and life-extending effects of HDACIs such as phenilbutyrate, sodium butyrate, trichistatin A and suberoylanilide hydroxamic acid as well as their plausible mechanism(s) of action in Drosophila melanogaster. Data supporting the hypothesis that life span extension induced by HDACIs may be caused by generalized changes in epigenetic regulation of gene expression are discussed. Overall, findings reviewed in this chapter suggest that uncovering which genetic factors and signaling pathways contributing to healthy aging can be influenced by HDACIs in fruit fly may facilitate the development of new strategies for treating and preventing age-related human diseases and health span extension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel T, Zukin RS (2008) Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 8:57–64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arking R (2009) Overview of the genomic architecture of longevity. In: Sell C, Lorenzini A, Brown-Borg HM (eds) Life Span extension: single cell organisms to man. Humana Press, Springer, Dordrecht, pp 59–73

    Chapter  Google Scholar 

  • Arking R, Novoseltseva J, Hwangbo DS et al (2002) Different age-specific demographic profiles are generated in the same normal-lived Drosophila strain by different longevity stimuli. J Gerontol A Biol Sci Med Sci 57:B390–B398

    Article  PubMed  Google Scholar 

  • Bacalini MG, Friso S, Olivieri F et al (2014) Present and future of anti-ageing epigenetic diets. Mech Ageing Dev 136–137:101–115

    Article  PubMed  Google Scholar 

  • Baltan S, Morrison RS, Murphy SP (2013) Novel protective effects of histone deacetylase inhibition on stroke and white matter ischemic injury. Neurotherapeutics 10:798–807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Benedetti R, Conte M, Altucci L (2014) Targeting HDACs in diseases: where are we? Antioxid Redox Signal Jan 1 (Epub ahead of print)

    Google Scholar 

  • Berdasco M, Esteller M (2012) Hot topics in epigenetic mechanisms of aging: 2011. Aging Cell 11:181–186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boros IM (2012) Histone modification in Drosophila. Brief Funct Genomics 11:319–331

    Article  CAS  PubMed  Google Scholar 

  • Boumber Y, Issa JP (2011) Epigenetics in cancer: what’s the future? Oncology (Williston Park) 25(220–226):228

    Google Scholar 

  • Boyd-Kirkup JD, Green CD, Wu G, Wang D, Han JD (2013) Epigenomics and the regulation of aging. Epigenomics 5:205–227

    Article  CAS  PubMed  Google Scholar 

  • Buommino E, Pasquali D, Sinisi AA et al (2000) Sodium butyrate/retinoic acid costimulation induces apoptosis-independent growth arrest and cell differentiation in normal and ras-transformed seminal vesicle epithelial cells unresponsive to retinoic acid. J Mol Endocrinol 24:83–94

    Article  CAS  PubMed  Google Scholar 

  • Chang KT, Min KT (2002) Regulation of lifespan by histone deacetylase. Ageing Res Rev 1:313–326

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Sun H, Lu J et al (2002) Histone acetylation is involved in hsp70 gene transcription regulation in Drosophila melanogaster. Arch Biochem Biophys 408:171–176

    Article  CAS  PubMed  Google Scholar 

  • Cho Y, Griswold A, Campbell C et al (2005) Individual histone deacetylases in Drosophila modulate transcription of distinct genes. Genomics 86:606–617

    Article  CAS  PubMed  Google Scholar 

  • Davie JR, Spencer VA (1999) Control of histone modifications. J Cell Biochem Suppl 32–33:141–148

    Article  Google Scholar 

  • Dominguez LJ, Barbagallo M, Morley JE (2009) Anti-aging medicine: pitfalls and hopes. Aging Male 12:13–20

    Article  PubMed  Google Scholar 

  • Doroszuk A, Jonker MJ, Pul N et al (2012) Transcriptome analysis of a long-lived natural Drosophila variant: a prominent role of stress- and reproduction-genes in lifespan extension. BMC Genomics 13:167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao L, Cueto MA, Asselbergs F et al (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277:25748–25755

    Article  CAS  PubMed  Google Scholar 

  • Hahnen E, Hauke J, Tränkle C et al (2008) Histone deacetylase inhibitors: possible implications for neurodegenerative disorders. Expert Opin Investig Drugs 17:169–184

    Article  CAS  PubMed  Google Scholar 

  • Helfand SL, Rogina B (2003) Molecular genetics of aging in the fly: is this the end of the beginning? BioEssays 25:134–141

    Article  CAS  PubMed  Google Scholar 

  • Huidobro C, Fernandez AF, Fraga MF (2013) Aging epigenetics: causes and consequences. Mol Aspects Med 34:765–781

    Article  CAS  PubMed  Google Scholar 

  • Iannitti T, Palmieri B (2011) Clinical and experimental applications of sodium phenylbutyrate. Drugs R D 11:227–249

    Article  PubMed Central  PubMed  Google Scholar 

  • Imai S, Armstrong CM, Kaeberlein M et al (2000) The transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800

    Article  CAS  PubMed  Google Scholar 

  • Issa JP (1999) Aging, DNA methylation and cancer. Crit Rev Oncol Hematol 32:31–43

    Article  CAS  PubMed  Google Scholar 

  • Johnstone RW (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1:287–299

    Article  CAS  PubMed  Google Scholar 

  • Jylhava J (2014) Determinants of longevity: genetics, biomarkers and therapeutic approaches. Curr Pharm Des 20(38):6058–6070

    Article  CAS  PubMed  Google Scholar 

  • Kang H-L, Benzer S, Min K-T (2002) Life extension in Drosophila by feeding a drug. Proc Natl Acad Sci USA 99:838–843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kapoor VK, Dureja J, Chadha R (2009) Synthetic drugs with anti-ageing effects. Drug Discov Today 14:899–904

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Jena GB (2014) Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat. Chem Biol Interact 213:1–12

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20:615–626

    Article  CAS  PubMed  Google Scholar 

  • Larson K, Yan S-J, Tsurumi A et al (2012) Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet 8:e1002473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Licciardi PV, Ververis K, Tang ML et al (2013) Immunomodulatory effects of histone deacetylase inhibitors. Curr Mol Med 13:640–647

    Article  CAS  PubMed  Google Scholar 

  • Lucanic M, Lithgow GJ, Alavez S (2013) Pharmacological lifespan extension of invertebrates. Ageing Res Rev 12:445–458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lyko F, Beisel C, Marhold J et al (2006) Epigenetic regulation in Drosophila. Curr Top Microbiol Immunol 310:23–44

    CAS  PubMed  Google Scholar 

  • McDonald P, Maizi BM, Arking R (2013) Chemical regulation of mid- and late-life longevities in Drosophila. Exp Gerontol 48:240–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morris BJ (2013) Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med 56:133–171

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Najar U, Sedivy JM (2011) Epigenetic control of aging. Antioxid Redox Signal 14:241–259

    Article  PubMed Central  PubMed  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of lifespan by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130

    Article  CAS  PubMed  Google Scholar 

  • Pile LA, Lee FW, Wassarman DA (2001) The histone deacetylase inhibitor trichostatin A influences the development of Drosophila melanogaster. Cell Mol Life Sci 11:1715–1718

    Article  Google Scholar 

  • Rando TA, Chang HY (2012) Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148:46–57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ridgel AL, Ritzmann RE (2005) Insights into age-related locomotor declines from studies of insects. Ageing Res Rev 4:23–39

    Article  PubMed  Google Scholar 

  • Satoh A, Stein L, Imai S (2011) The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity. Handb Exp Pharmacol 206:125–162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seroude L, Brummel T, Kapahi P et al (2002) Spatio-temporal analysis of gene expression during aging in Drosophila melanogaster. Aging Cell 1:47–56

    Article  CAS  PubMed  Google Scholar 

  • Sinclair DA, Guarente L (2014) Small-molecule allosteric activators of sirtuins. Annu Rev Pharmacol Toxicol 54:363–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Slingerland M, Guchelaar HJ, Gelderblom H (2014) Histone deacetylase inhibitors: an overview of the clinical studies in solid tumors. Anticancer Drugs 25:140–149

    Article  CAS  PubMed  Google Scholar 

  • St Laurent R, O’Brien LM, Ahmad ST (2013) Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson’s disease. Neuroscience 246:382–390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steffan JS, Bodai L, Pallos J et al (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413:739–743

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Komatsu T, Lim J et al (2012) Nutrient-dependent requirement for SOD1 in lifespan extension by protein restriction in Drosophila melanogaster. Aging Cell 11:783–793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swaminathan A, Gajan A, Pile LA (2012) Epigenetic regulation of transcription in Drosophila. Front Biosci 17:909–937

    Article  CAS  Google Scholar 

  • Symonenko AV, Roshina NV, Kolyada AK et al (2014) Changes in Drosophila melanogaster lifespan and gene expression profiling caused by the histone deacetylase inhibitors. In: Abstracts of the 3rd international conference “genetics of aging and longevity”, Moscow, Russia, April 2014

    Google Scholar 

  • Tao D, Lu J, Sun H et al (2004) Trichostatin A extends the lifespan of Drosophila melanogaster by elevating hsp22 expression. Acta Biochim Biophys Sinica 36:618–622

    Article  CAS  Google Scholar 

  • Tatar M, Khazaeli AA, Curtsinger JW (1997) Chaperoning extended life. Nature 390:30

    Article  CAS  PubMed  Google Scholar 

  • Toba G, Aigaki T (2000) Disruption of the microsomal glutathione S-transferase-like gene reduces life span of Drosophila melanogaster. Gene 253:179–187

    Article  CAS  PubMed  Google Scholar 

  • Tollefsbol TO (2014) Dietary epigenetics in cancer and aging. Cancer Treat Res 159:257–267

    Article  CAS  PubMed  Google Scholar 

  • Uchiumi F, Oyama T, Ozaki K (2012) A new protocol to discover novel anti-aging compounds. Pharmaceut Anal Acta 3:7. doi:10.4172/2153-2435.1000166

    Google Scholar 

  • Vaiserman AM (2008) Epigenetic engineering and its possible role in anti-aging intervention. Rejuvenation Res 11:39–42

    Article  CAS  PubMed  Google Scholar 

  • Vaiserman A (2011) Hormesis and epigenetics: is there a link? Ageing Res Rev 10:413–421

    CAS  PubMed  Google Scholar 

  • Vaiserman AM, Pasyukova EG (2012) Epigenetic drugs: a novel anti-aging strategy? Front Genet 3:224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vaiserman AM, Koliada AK, Koshel NM et al (2012) Effect of the histone deacetylase inhibitor sodium butyrate on the viability and life span in Drosophila melanogaster. Adv Gerontol 25:126–131 [In Russian]

    CAS  PubMed  Google Scholar 

  • Vaiserman AM, Koshel NM, Zabuga OG et al (2013) Determination of geroprotective potential of sodium butyrate in Drosophila melanogaster: long-term effects. Adv Gerontol 26:111–116 [In Russian]

    Google Scholar 

  • Vanhaecke T, Papeleu P, Elaut G et al (2004) Trichostatin A-like hydroxamate histone deacetylase inhibitors as therapeutic agents: toxicological point of view. Curr Med Chem 11:1629–1643

    Article  CAS  PubMed  Google Scholar 

  • Villeponteau B (1997) The heterochromatin loss model of aging. Exp Gerontol 32:383–394

    Article  CAS  PubMed  Google Scholar 

  • Webster GC, Webster SL (1984) Specific disappearance of translatable messenger RNA for elongation factor one in aging Drosophila melanogaster. Mech Aging Dev 24:335–342

    Article  CAS  PubMed  Google Scholar 

  • West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124:30–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Witt O, Deubzer HE, Milde T et al (2009) HDAC family: what are the cancer relevant targets? Cancer Lett 277:8–21

    Article  CAS  PubMed  Google Scholar 

  • Wood JG, Helfand SL (2013) Chromatin structure and transposable elements in organismal aging. Front Genet 4:274

    PubMed Central  PubMed  Google Scholar 

  • Wood JG, Hillenmeyer S, Lawrence C et al (2010) Chromatin remodeling in the aging genome of Drosophila. Aging Cell 9:971–978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yin D, Ong JM, Hu J et al (2007) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: effects on gene expression and growth of glioma cells in vitro and in vivo. Clin Cancer Res 3:1045–1052

    Article  Google Scholar 

  • Yuan H, Su L, Chen WY (2013) The emerging and diverse roles of sirtuins in cancer: a clinical perspective. Onco Targets Ther 6:1399–1416

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 3:259–266

    Article  Google Scholar 

  • Zhao Y, Lu J, Sun H et al (2005a) Histone acetylation regulates both transcription initiation and elongation of hsp22 gene in Drosophila. Biochem Biophys Res Commun 326:811–816

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Sun H, Lu J et al (2005b) Lifespan extension and elevated hsp gene expression in Drosophila caused by histone deacetylase inhibitors. J Exp Biol 208(Pt 4):697–705

    Article  CAS  PubMed  Google Scholar 

  • Zhao YM, Chen X, Sun H et al (2006) Effects of histone deacetylase inhibitors on transcriptional regulation of the hsp70 gene in Drosophila. Cell Res 16:566–576

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Lu J, Sun H et al (2007) Roles of histone acetylation modification in basal and inducible expression of hsp26 gene in D. melanogaster. Mol Cell Biochem 306:1–8

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Dalgard CL, Wynder C et al (2011) Histone deacetylase inhibitors SAHA and sodium butyrate block G1-to-S cell cycle progression in neurosphere formation by adult subventricular cells. BMC Neurosci 12:50. doi:10.1186/1471-2202-12-50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Oksana Zabuga for the assistance in preparing the manuscript. This work was supported by a joint grant of the Russian Foundation for Basic Research and the State Fund for Fundamental Research of Ukraine (project no. 11-04-90478-Ukr_f_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Vaiserman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vaiserman, A.M., Pasyukova, E.G. (2015). Life Extension in Drosophila by Histone Deacetylase Inhibitors. In: Vaiserman, A., Moskalev, A., Pasyukova, E. (eds) Life Extension. Healthy Ageing and Longevity, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-18326-8_11

Download citation

Publish with us

Policies and ethics