Skip to main content
Log in

Roles of histone acetylation modification in basal and inducible expression of hsp26 gene in D. melanogaster

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The promoter of the Drosophila hsp26 gene contains two DNase I-hypersensitive (DH) sites and a positioned nucleosome, and this open chromatin structure is required for heat-inducible expression. Histone acetylation modification participates in transcriptional regulation of genes by affecting the status of chromatin remodeling. In this study, we investigated the roles of histone acetylation modification on hsp26 expression in Drosophila. We showed that the histone deacetylase inhibitor (HDI) treatments of Drosophila larvae induced the histone H3 hyperacetylation at the promoter DH sites, which facilitated the binding of heat shock factor (HSF) to heat shock element (HSE). This resulted in a promoted transcription of hsp26 gene following the heat shock, and further increased the inducible expression of hsp26 gene. On the contrary, the HDI-induced histone H3 hyperacetylation in the middle nucleosome decreased the basal expression of hsp26 gene under the normal growth conditions. In addition, by following up the heat-shock time course, we showed that the histone acetylation level at the DH sites exhibited a drop-raise-drop change, while that at the positioned nucleosome underwent a raise-drop-raise-drop switchover. These results demonstrated the distinct roles played by histone acetylation modification in hsp26 gene basal and inducible expression regulation in D. melanogaster

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Hsp:

Heat shock protein

HDI:

Histone deacetylase inhibitor

TSA:

Trichostatin A

BuA:

Sodium butyrate

HSF:

Heat shock factor

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

GAF:

GAGA factor

ChIP:

Chromatin immunoprecipitation

References

  1. Lis JT, Wu C (1994) Transcriptional regulation of heat shock gene. In: Conaway RC, Conaway JW (eds) Transcription: mechanisms and regulation. Raven Press, New York, NY, pp 459–475

  2. Aalfs JD, Kingston RE (2000) What does “chromatin remodeling” mean? Trends Biochem Sci 25:548–555

    Article  PubMed  CAS  Google Scholar 

  3. Albright SR, Tjian R (2000) TAFs revisited: more data reveal new twists and confirm old ideas. Gene 242:1–13

    Article  PubMed  CAS  Google Scholar 

  4. Pugh BF (2000) Control of gene expression through regulation of the TATA-binding protein. Gene 255:1–14

    Article  PubMed  CAS  Google Scholar 

  5. Morimoto RI, Sarge KD, Abravaya K (1992) Transcriptional regulation of heat shock genes. A paradigm for inducible genomic responses. J Biol Chem 267:21987–21990

    PubMed  CAS  Google Scholar 

  6. Lis JT (1998) Promoter-associated pausing in promoter architecture and post-initiation transcriptional regulation. Cold Spring Harbor Symp. Quant Biol 53:347–356

    Article  Google Scholar 

  7. Francis NJ, Kingston RE (2001) Mechanisms of transcriptional memory. Nat Rev Mol Cell Biol 2:409–421

    Article  PubMed  CAS  Google Scholar 

  8. Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    PubMed  CAS  Google Scholar 

  9. Lu Q, Wallrath LL, Elgin SC (1995) The role of a positioned nucleosome at the Drosophila melanogaster hsp26 promoter. EMBO J 14:4738–4746

    PubMed  CAS  Google Scholar 

  10. Smith ST, Petruk S, Sedkov Y et al (2004) Modulation of heat shock gene expression by the TAC1 chromatin-modifying complex. Nat Cell Boil 6:162–167

    Article  CAS  Google Scholar 

  11. Li Q, Herrler M, Landsberger N et al (1998) Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J 17:6300–6315

    Article  PubMed  CAS  Google Scholar 

  12. Nightingale KP, Wellinger RE, Sogo JM et al (1998) Histone acetylation facilitates RNA polymerase II transcription of the Drosophila hsp26 gene in chromatin. EMBO J 17:2865–2876

    Article  PubMed  CAS  Google Scholar 

  13. Ovakim DH, Heikkila JJ (2003) Effect of histone deacetylase inhibitors on heat shock protein gene expression during Xenopus development. Genetics 36:88–96

    CAS  Google Scholar 

  14. Ahringer J (2000) NuRD and SIN3: histone deacetylase complexes in development. Trends Genet 16:351–356

    Article  PubMed  CAS  Google Scholar 

  15. Ng HH, Bird A (2000) Histone deacetylases: silencers for hire. Trends Biochem Sci 25:121–126

    Article  PubMed  CAS  Google Scholar 

  16. Johnstone RW (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1:287–299

    Article  PubMed  CAS  Google Scholar 

  17. Zhao Y, Lu J, Sun H et al (2005) Histone acetylation regulates both transcription initiation and elongation of hsp22 gene in Drosophila. Biochem Biophys Res Commun 326:811–816

    Article  PubMed  CAS  Google Scholar 

  18. Zhao Y, Chen X, Sun H et al (2006) Effect of histone deacetylase inhibitors on hsp70 gene transcription regulation in Drosophila. Cell Res 16:566–576

    Article  PubMed  CAS  Google Scholar 

  19. Giancotti V, Russo E, De Cristini F et al (1984) Histone modification in early and late Drosophila embryos. Biochem J 218:321–329

    PubMed  CAS  Google Scholar 

  20. Zhao Y, Sun H, Lu J et al (2005) Lifespan extension and elevated hsp gene expression in Drosophila caused by histone deacetylases inhibitors. J Exp Biol 208:697–705

    Article  PubMed  CAS  Google Scholar 

  21. Marks PA, Richon VM, Rifkind RA (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92:1210–1216

    Article  PubMed  CAS  Google Scholar 

  22. Yoshida M, Kijima M, Akita M et al (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265:17174–17179

    PubMed  CAS  Google Scholar 

  23. Sealy L, Chalkley R (1978) The effect of sodium butyrate on histone modification. Cell 14:115–121

    Article  PubMed  CAS  Google Scholar 

  24. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  PubMed  CAS  Google Scholar 

  25. Shopland LS, Hirayoshi K, Fernandes M et al (1995) HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites. Genes Dev 9:2756–2769

    Article  PubMed  CAS  Google Scholar 

  26. Leibovtch BA, Lu Q, Benjamin LR et al (2002) GAGA factor and the TFIID complex collaborate in generating an open chromatin structure at the Drosophila melanogaster hsp26 promoter. Mol Cell Biol 22:6148–6157

    Article  Google Scholar 

  27. Tsukiyama T, Wu C (1995) Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83:1011–1020

    Article  PubMed  CAS  Google Scholar 

  28. Tsukiyama T, Becker PB, Wu C (1994) ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367:525–532

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Professors J.T. Lis (Department of Molecular Biology and Genetics, College of Agriculture and life Sciences, Cornell University) and C. Wu (Laboratory of Biochemistry, NCI, NIH) for providing antibodies. This work was supported by grants from The National Basic Research Program of China (2006CB910506, 2005CB522404) and from the Program for Changjiang Scholars and Innovative Research Team (PCSIRT) in Universities (IRT0519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiqu Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Lu, J., Sun, H. et al. Roles of histone acetylation modification in basal and inducible expression of hsp26 gene in D. melanogaster . Mol Cell Biochem 306, 1–8 (2007). https://doi.org/10.1007/s11010-007-9547-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9547-x

Keywords

Navigation