Skip to main content

Nitric Oxide and UV-B Radiation

  • Chapter
  • First Online:
Nitric Oxide Action in Abiotic Stress Responses in Plants

Abstract

Over the past few years, nitric oxide (NO) has emerged as a key player in plant adaptive/hypersensitive responses to abiotic (stress) factors, since the content of endogenously generated NO increases in adverse environmental conditions. This chapter addresses to the signalling events with the involvement of the reactive nitrogen species under ultraviolet-B (UV-B) exposure. Solar UV-B has long been recognized as merely deleterious environmental factor; however, rapidly increasing evidence indicates that it plays regulatory role as photomorphogenic trigger for plants. In turn, NO is supposed to be the crucial signalling molecule under plant response to UV-B. The putative biochemical mechanisms of the protective effects of exogenous NO donors on plant cells and the input of NO-synthase-like activities and nitrate reductase under UV-B exposure are discussed. The involvement of cytoskeleton-related NO signalling pathways (especially based on involvement) of microtubules in realization of intracellular UV-B effects is highlighted in the review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abello N, Kerstjens HA, Postma DS, Bischoff R (2009) Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J Proteome Res 8:3222–3238

    Article  CAS  PubMed  Google Scholar 

  • An L, Liu Y, Zhang M et al (2005) Effect of nitric oxide on growth of maize seedling leaves in presence or absence of ultraviolet-B radiation. J Plant Physiol 162:317–326

    Article  CAS  PubMed  Google Scholar 

  • Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci 172:876–887

    Article  CAS  Google Scholar 

  • Astier J, Besson-Bard A, Wawer I et al (2010) Nitric oxide signaling in plants: cross-talk with Ca2+, protein kinases and reactive oxygen species. In: Foyer CH, Zhang H (eds) Nitrogen metabolism in plants in the post-genomic era, vol 42. Annu Plant Rev, pp 147–170

    Google Scholar 

  • Ballaré CL, Caldwell MM, Robinson SA et al (2011) Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem Photobiol Sci 10:226–241

    Article  PubMed  Google Scholar 

  • Baudouin E (2011) The language of nitric oxide signalling. Plant Biol 13(2):233–242

    Google Scholar 

  • Belenghi B, Romero-Puertas MC, Vercammen D et al (2007) Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J Biol Chem 282:1352–1358

    Article  CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants. Nitric Oxide: Biol Chem 3:199–208

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2001) Nitric oxide in plants: the history is just beginning. Plant Cell Environ 24:267–278

    Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signalling in plants. Annul Rev Plant Biol 59:21–39

    Article  CAS  Google Scholar 

  • Blume YB, Krasylenko YuA, Yemets AI (2009) Tyrosine nitration as regulatory protein post-translational modification. Ukr Biochem J 81:5–15

    CAS  Google Scholar 

  • Blume YB, Krasylenko YA, Demchuk OM, Yemets AI (2013) Tubulin tyrosine nitration regulates microtubule organization in plant cells. Front Plant Sci 4:530

    Article  PubMed Central  PubMed  Google Scholar 

  • Brosche M, Strid A (2003) Molecular events following perception of ultraviolet-B radiation by plants. Physiol Plant 117:1–10

    Article  CAS  Google Scholar 

  • Casati P, Walbot V (2004) Rapid transcriptome responses of maize (Zea mays) to UV-B in irradiated and shielded tissues. Genome Biol 5:R16

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen K, Song L, Rao B et al (2010) Nitric oxide plays a role as second messenger in the ultraviolet-B irradiated green alga Chlorella pyrenoidosa. Folia Microbiol 55:53–60

    Article  CAS  Google Scholar 

  • Chen H-Z, Zhai J-R, Du M-T, Han M (2011) Influence of enhanced UV-B radiation on F-actin in wheat division cells. Plant Diversity Res 33:306–310 (in Chinese)

    CAS  Google Scholar 

  • Corpas FJ, Chaki M, Fernández-Ocaña A et al (2008) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol 49:1711–1722

    Article  CAS  PubMed  Google Scholar 

  • Corpas FC, Leterrier M, Valderrama R et al (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181:604–611

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Foresi N, Lamattina L (2013) Structure diversity of nitric oxide synthases (NOS): the emergence of new forms in photosynthetic organisms. Front Plant Sci 4:232

    Article  PubMed Central  PubMed  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Durzan DJ, Pedroso MC (2002) Nitric oxide and reactive nitrogen oxide species in plants. Biotechnol Genet Eng Rev 19:293–337

    Article  CAS  PubMed  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation mediated responses in plants: balancing damage and protection. Plant Physiol 133:1420–1428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790–792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gardiner J, Overall R, Marc J (2012) Plant microtubule cytoskeleton complexity: microtubule arrays as fractals. J Exp Bot 63:635–642

    Article  CAS  PubMed  Google Scholar 

  • Grün S, Lindermayr C, Sell S, Durner J (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57:507–516

    Article  PubMed  Google Scholar 

  • Guo A-H, Gao L-M, Li Y-F, Han R (2010) Influence on microtubule in wheat mesophyll cell exposed to enhanced ultraviolet-B radiation and He-Ne laser irradiation. CNKI J Guihaia 02. doi:CNKI:SUN:GXZW.0.2010-02-021

    Google Scholar 

  • Gupta KJ, Bauwe H, Mur LAJ (2011) Nitric oxide, nitrate reductase and UV-B tolerance. Tree Physiol 31:795–797

    Article  CAS  PubMed  Google Scholar 

  • Hao G, Du X, Zhao F et al (2009) Role of nitric oxide in UV-B-induced activation of PAL and stimulation of flavonoid biosynthesis in Ginkgo biloba callus. Plant Cell Tiss Org Cult 97:175–185

    Article  CAS  Google Scholar 

  • Hari P, Raivonen M, Vesala T et al (2003) Atmospheric science: ultraviolet light and leaf emission of NO(x). Nature 422:134

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Gill SS, Fujita M (2013) Physiological role of nitric oxide in plants grown under adverse environmental conditions. In: Tuteja N, Sarvajee SG (eds) Plant acclimation to environmental stress. Springer, New York, pp 269–322

    Chapter  Google Scholar 

  • He J-M, Xu H, She X-P et al (2005) The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. Funct Plant Biol 32:237–247

    Article  CAS  Google Scholar 

  • He JM, Bai XL, Wang RB et al (2007) The involvement of nitric oxide in ultraviolet-B-inhibited pollen germination and tube growth of Paulownia tomentosa in vitro. Physiol Plant 131:273–282

    CAS  PubMed  Google Scholar 

  • He JM, Ma XG, Zhang Y et al (2013) Role and interrelationship of Ga protein, hydrogen peroxide and nitric oxide in ultraviolet B-induced stomatal closure in Arabidopsis leaves. Plant Physiol 161:1570–1583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heijde M, Ulm R (2012) UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci 17:230–237

    Article  CAS  PubMed  Google Scholar 

  • Hollósy F (2002) Effects of ultraviolet radiation on plant cells. Micron 33:179–197

    Article  PubMed  Google Scholar 

  • Ioki M, Takahashi S, Nakajima N et al (2008) An unidentified ultraviolet-B-specific photoreceptor mediates transcriptional activation of the cyclobutane pyrimidine dimer photolyase gene in plants. Planta 229:25–36

    Article  CAS  PubMed  Google Scholar 

  • Jacques E, Hectors K, Guisez Y et al (2011) UV radiation reduces epidermal cell expansion in Arabidopsis thaliana leaves without altering cellular microtubule organization. Plant Signal Behav 6:1–3

    Article  Google Scholar 

  • Jansen MAK (2002) Ultraviolet-B radiation effects on plants: induction of morphogenic responses. Physiol Plant 116:423–429

    Article  CAS  Google Scholar 

  • Jansen MAK, Bornman JF (2012) UV-B radiation: from generic stressor to specific regulator. Physiol Plant 145:501–504

    Article  CAS  PubMed  Google Scholar 

  • Jansen MAK, Hideg E, Lidon FJC (2012) UV-B radiation: When does the stressor cause stress? Emir J Food Agric 24:1–3

    Article  Google Scholar 

  • Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431

    Article  CAS  PubMed  Google Scholar 

  • Jenkins GI, Brown BA (2007) UV-B perception and signal transduction. In: Whitelam GC, Halliday KJ (eds) Light and plant development, vol 30. Blackwell Publishing, Oxford, pp 155–182

    Chapter  Google Scholar 

  • Jiang L, Wang Y, Björn LO et al (2012) Sensing of UV-B radiation by plants. Plant Signal Behav 7:999–1003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim T-Y, Jo M-H, Hong J-H (2010) Protective effect of nitric oxide against oxidative stress under UV-B Radiation in maize leaves. J Environ Sci 19:1323–1334

    Google Scholar 

  • Krasylenko YA, Yemets AI, Sheremet YA, Blume YB (2011) Nitric oxide as a critical factor for perception of UV-B irradiation by microtubules in Arabidopsis. Physiol Plant 145:505–515

    Article  PubMed  Google Scholar 

  • Krasylenko YA, Yemets AI, Blume YB (2012) Cytoskeleton-mediated signalling pathways in UV-B perception by plant cell. Emir J Food Agric 24:557–564

    Article  Google Scholar 

  • Krasylenko YA, Yemets AI, Blume YB (2013) Plant microtubules reorganization under the indirect UV-B exposure and during UV-B-induced programmed cell death. Plant Signal Behav 8:e24031

    Article  PubMed Central  PubMed  Google Scholar 

  • Ktitorova IN, Demchenko NP, Kalimova IB et al (2006) Cellular analysis of UV-B induced barley root subapical swelling. Russ J Plant Physiol 5:824–836

    Article  Google Scholar 

  • Lamattina L, Beligni MV, Garcia-Mata C, Laxalt AM (2001) Method of enhancing the metabolic function and the growing conditions of plants and seeds. US patent US 6242384B1

    Google Scholar 

  • Lamotte O, Courtois C, Dobrowolska G et al (2006) Mechanisms of nitric-oxide-induced increase of free cytosolic Ca2+ concentration in Nicotiana plumbaginifolia cells. Free Radic Biol Med 40:1369–1376

    Article  CAS  PubMed  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lozano-Juste J, Colom-Moreno R, León J (2011) In vivo protein tyrosine nitration in Arabidopsis thaliana. J Exp Bot 62:350–3517

    Article  Google Scholar 

  • Mackerness SAH, Jordan BR (1999) Changes in gene expression in response to ultraviolet B-induced stress. Handbook of Plant and Crop Stress, 2nd edn. New York, Basel

    Google Scholar 

  • Mackerness SAH, John CF, Jordan B, Thomas B (2001) Early signalling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489:237–242

    Article  CAS  Google Scholar 

  • Mazid M, Khan TM, Mohammad F (2011) Role of nitric oxide in regulation of H2O2 mediating tolerance of plants to abiotic stress: a synergistic signalling approach. J Stress Physiol Biochem 7:34–74

    Google Scholar 

  • McKenzie RL, Aucamp PJ, Bais F et al (2011) Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 10:182–198

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mur LAJ, Mandon J, Persijn S et al (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB PLANTS 5:pls052

    Google Scholar 

  • Nick P (2008) Microtubules as sensors for abiotic stimuli. Plant Cell Mon 16:175–203

    Article  Google Scholar 

  • Noriega G, Yannarelli G, Balestrasse K et al (2007) The effect of nitric oxide on heme oxygenase gene expression in soybean leaves. Planta 226:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Pedroso MC, Durzan DJ (2000) Effect of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves. Ann Bot 86:983–994

    Article  CAS  PubMed  Google Scholar 

  • Pedroso MC, Magalhaes JR, Durzan D (2000) Nitric oxide induces cell death in Taxus cells. Plant Sci 157:173–180

    Google Scholar 

  • Qiao W, Fan LM (2008) Nitric oxide signalling in plant responses to abiotic stresses. J Integr Plant Biol 50:1238–1246

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Feng HY, Wang YB et al (2006) Nitric oxide functions as a signal in ultraviolet-B induced inhibition of pea stems elongation. Plant Sci 170:994–1000

    Article  CAS  Google Scholar 

  • Rizzini L, Favory JJ, Cloix C et al (2011) Perception of UV-B by the Arabidopsis UVR8 Protein. Sci 332:103–106

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Sandalio LM (2013) Protein S-nitrosylation in plants under abiotic stress: an overview. Front Plant Sci 4:1–6

    Article  Google Scholar 

  • Santa-Cruz DM, Pacienza NA, Polizio AH et al (2010) Nitric oxide synthase-like dependent NO production enhances heme oxygenase up-regulation in ultraviolet-B-irradiated soybean plants. Phytochem 71:1700–1707

    Article  CAS  Google Scholar 

  • Shi S, Wang G, Wang Y et al (2005) Protective effect of nitric oxide against oxidative stress under ultraviolet-B irradiation. Nitric Oxide 13:1–9

    Article  CAS  PubMed  Google Scholar 

  • Staxén I, Bornman JF (1994) A morphological and cytological study of Petunia hybrida exposed to UV-B radiation. Physiol Plant 91:735–740

    Google Scholar 

  • Staxèn I, Bergounioux C, Bornman JF (1993) Effect of ultraviolet radiation on cell division and microtubules organization in Petunia hybrida protoplasts. Protoplasma 173:70–76

    Article  Google Scholar 

  • Tossi V, Cassia R, Lamattina L (2009) Apocynin-induced nitric oxide production confers antioxidant protection in maize leaves. J Plant Physiol 166:1336–1341

    Article  CAS  PubMed  Google Scholar 

  • Tossi V, Amenta M, Lamattina L, Cassia R (2011) Nitric oxide enhances plant ultraviolet-B protection up-regulating gene expression of the phenylpropanoid biosynthetic pathway. Plant Cell Environ 34:909–921

    Google Scholar 

  • Tossi V, Cassia R, Bruzzone S et al (2012) ABA says NO to UV-B: a universal response? Trends Plant Sci 17:510–517

    Article  CAS  PubMed  Google Scholar 

  • Valderrama R, Corpas FJ, Carreras A et al (2007) Nitrosative stress in plants. FEBS Lett 581:453–461

    Article  CAS  PubMed  Google Scholar 

  • Vandelle E, Delledonne M (2011) Peroxynitrite formation and function in plants. Plant Sci 181:534–539

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Feng H, Qu Y et al (2006) The relationship between reactive oxygen species and nitric oxide in ultraviolet-B-induced ethylene production in leaves of maize seedlings. Environ Exp Bot 56:51–61

    Article  Google Scholar 

  • Wilson ID, Neill SJ, Hancock JT (2008) Nitric oxide synthesis and signalling in plants. Plant Cell Environ 31:622–631

    Google Scholar 

  • Wright LA, Murphy TM (1975) Photoreactivation of nitrate reductase production in Nicotiana tabacum var. Xanthi Biochim Biophys Acta 407:338–346

    Article  CAS  Google Scholar 

  • Wrzaczek M, Overmyer K, Kangasjärvi J (2010) Plant ROS and RNS: making plant science more radical than ever. Physiol Plant 138:357–359

    Google Scholar 

  • Wu D, Hu Q, Yan Z et al (2012) Structural basis of ultraviolet-B perception by UVR8. Nature 484:214–220

    Article  PubMed  Google Scholar 

  • Xue LG, Li SW, Xu SJ et al (2006) Alleviative effects of nitric oxide on the biological damage of Spirulina platensis induced by enhanced ultraviolet-B. Wei Sheng Wu Xue Bao 46:561–564

    PubMed  Google Scholar 

  • Xue L, Li S, Sheng H et al (2007) Nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in cyanobacterium. Curr Microbiol 55:294–301

    Article  CAS  PubMed  Google Scholar 

  • Xue L, Li S, Zhang B et al (2011) Counteractive action of nitric oxide on the decrease of nitrogenase activity induced by enhanced ultraviolet-B radiation in cyanobacterium. Curr Microbiol 62:1253–1259

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Han R, Sun Y (2013) Effects of exogenous nitric oxide on wheat exposed to enhanced ultraviolet-B radiation. Am J Plant Sci 4:1285–1290

    Article  CAS  Google Scholar 

  • Yemets AI, Krasylenko YA, Sheremet YA, Blume YB (2009) Microtubule reorganization as a response to implementation of NO signals in plant cell. Cytol Genet 43:73–79

    Article  Google Scholar 

  • Yemets AI, Krasylenko YA, Lytvyn DI et al (2011) Nitric oxide signalling via cytoskeleton in plants. Plant Sci 181:545–554

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhao L (2008) Production of nitric oxide under ultraviolet-B irradiation is mediated by hydrogen peroxide through activation of nitric oxide synthase. J Plant Biol 51:395–400

    Article  CAS  Google Scholar 

  • Zhang M, An L, Feng P et al (2003) The cascade mechanisms of nitric oxide as a second messenger of ultraviolet-B in inhibiting mesocotyl elongations. Photochem Photobiol 77:219–225

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Dong JF, Jin HH et al (2011) UV-B-induced flavonoid accumulation in Betula pendula leaves is dependent upon nitrate reductase-mediated nitric oxide signaling. Tree Physiol 31:798–807

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Wang G, Zhang W (2007) UV-B responsive microRNA genes in Arabidopsis thaliana. Mol Syst Biol 3:1–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alla I. Yemets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yemets, A.I., Krasylenko, Y.A., Blume, Y.B. (2015). Nitric Oxide and UV-B Radiation. In: Khan, M., Mobin, M., Mohammad, F., Corpas, F. (eds) Nitric Oxide Action in Abiotic Stress Responses in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-17804-2_9

Download citation

Publish with us

Policies and ethics