Skip to main content

Approximating the Maximum Internal Spanning Tree Problem via a Maximum Path-Cycle Cover

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8889))

Included in the following conference series:

Abstract

This paper focuses on finding a spanning tree of a graph to maximize its internal vertices in number. We propose a new upper bound for the number of internal vertices in a spanning tree, which shows that for any undirected simple graph, any spanning tree has less internal vertices than the edges a maximum path-cycle cover has. Thus starting with a maximum path-cycle cover, we can devise an approximation algorithm with a performance ratio \(\frac{3}{2}\) for this problem on undirected simple graphs. This improves upon the best known performance ratio \(\frac{5}{3}\) achieved by the algorithm of Knauer and Spoerhase. Furthermore, we can improve the algorithm to achieve a performance ratio \(\frac{4}{3}\) for this problem on graphs without leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama, T., Nishizeki, T., Saito, N.: NP-completeness of the Hamiltonian cycle problem for bipartite graphs. Journal of Information Processing 3(2), 73–76 (1980)

    MATH  MathSciNet  Google Scholar 

  2. Binkele-Raible, D., Fernau, H., Gaspers, S., Liedloff, M.: Exact and parameterized algorithms for MAX INTERNAL SPANNING TREE. Algorithmica 65, 95–128 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Coben, N., Fomin, F.V., Gutin, G., Kim, E.J., Saurabh, S., Yeo, A.: Algorithm for finding k-vertex out-trees and its application to k-internal out-branching problem. JCSS 76(7), 650–662 (2010)

    Google Scholar 

  4. Edmonds, J., Johnson, E.L.: Matching: a well solved class of integer linear programs. In: Combinatorial Structures and their Applications, pp. 89–92. Gordon and Breach, New York (1970)

    Google Scholar 

  5. Fomin, F.V., Lokshtanov, D., Grandoni, F., Saurabh, S.: Sharp seperation and applications to exact and parameterized algorithms. Algorithmica 63(3), 692–706 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fomin, F.V., Gaspers, S., Saurabh, S., Thomassé, S.: A linear vertex kernel for maximum internal spanning tree. JCSS 79, 1–6 (2013)

    MATH  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)

    Google Scholar 

  8. Hartvigsen, D.: Extensions of matching theory, Ph.D. Thesis. Carnegie-Mellon University (1984)

    Google Scholar 

  9. Knauer, M., Spoerhase, J.: Better Approximation Algorithms for the Maximum Internal Spanning Tree Problem. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 459–470. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Lu, H., Ravi, R.: The power of local optimization approximation algorithms for maximum-leaf spanning tree. Technical report. Department of Computer Science, Brown University (1996)

    Google Scholar 

  11. Prieto, E., Sloper, C.: Either/Or: using Vertex Cover structure in designing FPT-algorithms — the case of k-Internal Spanning Tree. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 474–483. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Prieto, E.: Systematic kernelization in FPT algorithm design. Ph.D. Thesis, The University of Newcastle, Australia (2005)

    Google Scholar 

  13. Prieto, E., Sloper, C.: Reducing to independent set structurethe case of k-internal spanning tree. Nord. J. Comput. 12(3), 308–318 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Salamon, G., Wiener, G.: On finding spanning trees with few leaves. Information Processing Letters 105(5), 164–169 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Salamon, G.: Approximating the Maximum Internal Spanning Tree problem. Theoretical Computer Scientc 410(50), 5273–5284 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Salamon, G.: Degree-Based Spanning Tree Optimization. Ph.D. thesis, Budapest University of Technology and Ecnomics, Hungary (2009)

    Google Scholar 

  17. Shiloach, Y.: Another look at the degree constrained subgraph problem. Inf. Process. Lett. 12(2), 89–92 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zehavi, M.: Algorithms for k-Internal Out-Branching. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 361–373. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daming Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, X., Zhu, D. (2014). Approximating the Maximum Internal Spanning Tree Problem via a Maximum Path-Cycle Cover. In: Ahn, HK., Shin, CS. (eds) Algorithms and Computation. ISAAC 2014. Lecture Notes in Computer Science(), vol 8889. Springer, Cham. https://doi.org/10.1007/978-3-319-13075-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13075-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13074-3

  • Online ISBN: 978-3-319-13075-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics