Skip to main content
Log in

Sharp Separation and Applications to Exact and Parameterized Algorithms

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Many divide-and-conquer algorithms employ the fact that the vertex set of a graph of bounded treewidth can be separated in two roughly balanced subsets by removing a small subset of vertices, referred to as a separator. In this paper we prove a trade-off between the size of the separator and the sharpness with which we can fix the size of the two sides of the partition. Our result appears to be a handy and powerful tool for the design of exact and parameterized algorithms for NP-hard problems. We illustrate that by presenting two applications.

Our first application is a O(2n+o(n))-time algorithm for the Degree Constrained Spanning Tree problem: find a spanning tree of a graph with the maximum number of nodes satisfying given degree constraints. This problem generalizes some well-studied problems, among them Hamiltonian Path, Full Degree Spanning Tree, Bounded Degree Spanning Tree, and Maximum Internal Spanning Tree.

The second application is a parameterized algorithm with running time O(16k+o(k)+n O(1)) for the k-Internal Out-Branching problem: here the goal is to compute an out-branching of a digraph with at least k internal nodes. This is a significant improvement over the best previously known parameterized algorithm for the problem by Cohen et al. (J. Comput. Syst. Sci. 76:650–662, 2010), running in time O(49.4k+n O(1)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, N., Seymour, P., Thomas, R.: A separator theorem for non-planar graphs. J. Am. Math. Soc. 3, 801–808 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). J. Algorithms 54(2), 168–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Björklund, A.: Determinant sums for undirected Hamiltonicity. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 173–182 (2010)

    Google Scholar 

  4. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput. 39(2), 546–563 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: Fast subset convolution. In: ACM Symposium on Theory of Computing (STOC), pp. 67–74 (2007)

    Google Scholar 

  6. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgeois, N., Escoffier, B., Paschos, V.T., van Rooij, J.M.M.: A bottom-up method and fast algorithms for max independent set. In: Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pp. 62–73 (2010)

    Google Scholar 

  8. Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved algorithms for path, matching, and packing problems. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 298–307 (2007)

    Google Scholar 

  9. Christofides, N.: An algorithm for the chromatic number of a graph. Comput. J. 14(1), 38–39 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen, N., Fomin, F.V., Gutin, G., Kim, E.J., Saurabh, S., Yeo, A.: Algorithm for finding k-vertex out-trees and its application to k-internal out-branching problem. J. Comput. Syst. Sci. 76(7), 650–662 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Diestel, R.: Graph Theory. Springer, Berlin (2010)

    Book  Google Scholar 

  12. Fernau, H., Gaspers, S., Raible, D.: Exact and parameterized algorithms for max internal spanning tree. In: International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pp. 100–111 (2009)

    Google Scholar 

  13. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  14. Fomin, F.V., Grandoni, F., Kratsch, D.: Faster Steiner tree computation in polynomial-space. In: European Symposium on Algorithms (ESA), pp. 430–441 (2008)

    Google Scholar 

  15. Fomin, F.V., Grandoni, F., Kratsch, D.: Solving connected dominating set faster than 2n. Algorithmica 52(2), 153–166 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. Journal of the ACM 56(5) (2009)

  17. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications. ACM Transactions on Algorithms 5(1) (2008)

  18. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem: Exact and enumeration algorithms. Algorithmica 52(2), 293–307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fomin, F.V., Gaspers, S., Saurabh, S., Thomassé, S.: A linear vertex kernel for maximum internal spanning tree. In: International Symposium on Algorithms and Computation (ISAAC), pp. 275–282 (2009)

    Google Scholar 

  20. Fomin, F.V., Lokshtanov, D., Grandoni, F., Saurabh, S.: Sharp separation and applications to exact and parameterized algorithms. In: Latin American Symposium on Theoretical Informatics (LATIN), pp. 72–83 (2010)

    Google Scholar 

  21. Fuchs, B., Kern, W., Mölle, D., Richter, S., Rossmanith, P., Wang, X.: Dynamic programming for minimum steiner trees. Theory Comput. Syst. 41(3), 493–500 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fürer, M., Raghavachari, B.: Approximating the minimum-degree Steiner tree to within one of optimal. J. Algorithms 17(3), 409–423 (1994)

    Article  MathSciNet  Google Scholar 

  23. Gaspers, S., Saurabh, S., Stepanov, A.A.: A moderately exponential time algorithm for full degree spanning tree. In: International Conference on Theory and Applications of Models of Computation (TAMC), pp. 479–489 (2008)

    Chapter  Google Scholar 

  24. Goemans, M.X.: Minimum bounded degree spanning trees. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 273–282 (2006)

    Chapter  Google Scholar 

  25. Grandoni, F.: A note on the complexity of minimum dominating set. J. Discrete Algorithms 4(2), 209–214 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gutin, G., Razgon, I., Kim, E.J.: Minimum leaf out-branching and related problems. Theor. Comput. Sci. 410(45), 4571–4579 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. SIAM 10, 196–210 (1962)

    MathSciNet  MATH  Google Scholar 

  28. Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion. Oper. Res. Lett. 1, 49–51 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  29. Khuller, S., Bhatia, R., Pless, R.: On local search and placement of meters in networks. SIAM J. Comput. 32(2), 470–487 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-color. In: International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pp. 58–67 (2006)

    Chapter  Google Scholar 

  31. Kohn, S., Gottlieb, A., Kohn, M.: A generating function approach to the traveling salesman problem. In: ACM Annual Conference, pp. 294–300 (1977)

    Google Scholar 

  32. Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theor. Comput. Sci. 223(1–2), 1–72 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lawler, E.L.: A note on the complexity of the chromatic number problem. Inf. Process. Lett. 5(3), 66–67 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36, 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9, 615–627 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lokshtanov, D., Nederlof, J.: Saving space by algebraization. In: ACM Symposium on Theory of Computing (STOC), pp. 321–330 (2010)

    Chapter  Google Scholar 

  37. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete Appl. Math. 10(3), 287–295 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 182–191 (1995)

    Google Scholar 

  39. Nederlof, J.: Fast polynomial-space algorithms using Möbius inversion: Improving on Steiner tree and related problems. In: International Colloquium on Automata, Languages and Programming (ICALP), pp. 713–725 (2009)

    Chapter  Google Scholar 

  40. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, London (2006)

    Book  MATH  Google Scholar 

  41. Prieto, E., Sloper, C.: Reducing to independent set structure—the case of k-internal spanning tree. Nord. J. Comput. 12(3), 308–318 (2005)

    MathSciNet  MATH  Google Scholar 

  42. Razgon, I.: Exact computation of maximum induced forest. In: Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pp. 160–171 (2006)

    Google Scholar 

  43. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7(3), 425–440 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  45. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to within one of optimal. In: ACM Symposium on Theory of Computing (STOC), pp. 661–670 (2007)

    Google Scholar 

  46. Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. SIAM J. Comput. 6(3), 537–546 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  47. van Rooij, J.M.M., Bodlaender, H.L.: Design by measure and conquer, a faster exact algorithm for dominating set. In: Symposium on Theoretical Aspects of Computer Science (STACS), pp. 657–668 (2008)

    Google Scholar 

  48. Williams, R.: Finding paths of length k in O (2k) time. Inf. Process. Lett. 109(6), 315–318 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saket Saurabh.

Additional information

A preliminary version of this paper appeared in the proceedings of LATIN 2010 [20].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomin, F.V., Grandoni, F., Lokshtanov, D. et al. Sharp Separation and Applications to Exact and Parameterized Algorithms. Algorithmica 63, 692–706 (2012). https://doi.org/10.1007/s00453-011-9555-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-011-9555-9

Keywords

Navigation