Skip to main content

Realization of WHS Based on the Static Gravity Field Observed by GOCE

  • Conference paper
Gravity, Geoid and Height Systems

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 141))

Abstract

The paper deals with a determination of W 0 as well as testing of geoid candidates for a realization of the World Height System using the GOCO03S satellite-only geopotential model. The W 0 values are estimated for two different altimetric mean sea surface models (DTU10_MSS and MSS_CNES_CLS2011) using four different global geopotential models (GGMs), namely GOCE-DIR2 or GOCO03S satellite-only GGMs, and EGM2008 or EIGEN-6C combined GGMs. In all cases the impact of including polar regions into the integration area is presented.

The second part studies how the high-degree combined GGMs or local gravimetric geoid models correspond to the static gravity field observed by GOCE. The nonlinear diffusion filtering is used to reduce the stripping noise of the geopotential evaluated from the GOCO03S model up to degree 250. On lands, the geopotential is evaluated at 3D positions of the local (national) gravimetric-only geoid models, namely USGG-2012 in USA, CGG-2010 in Canada, AGQG-2009 in Australia, and NZGeoid09 in New Zealand, otherwise at 3D positions of the EIGEN-6C or EGM-2008 geoid models. At oceans, the geopotential is filtered on the DTU10 mean sea surface whose 3D position is precisely provided by satellite altimetry. Apart from high mountainous areas, the smoothed geopotential on the considered geoid models shows good agreement with GOCO03S, i.e. with the low-frequency part of the gravity field precisely observed by GRACE/GOCE. At the same time the filtered satellite-only mean dynamic topography is provided specifying its relation to the geoid models at coastal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amos MJ, Featherstone WE (2009) Unification of New Zealand’s local vertical datums: iterative gravimetric quasigeoid computations. J Geod 83(1):57–68

    Article  Google Scholar 

  • Andersen OB (2010) The DTU10 gravity field and mean sea surface. Presented at the second international symposium of the gravity field of the Earth (IGFS2), Fairbanks, Alaska

    Google Scholar 

  • Bruinsma SL, Marty JC, Balmino G, Biancale R, Foerste C, Abrikosov O, Neumayer H (2010) GOCE gravity field recovery by means of the direct numerical method. Presented at the ESA living planet symposium, Bergen, Norway, 27 June–2 July 2010 (see also: earth.esa.int/GOCE)

  • Burša M, Kouba J, Kumar M, Muller A, Radej K, True SA, Vatrt V, Vojtišková M (1999) Geoidal geopotential and World Height System. Stud Geophys Geod 43:327–337

    Article  Google Scholar 

  • Burša M, Kenyon S, Kouba J, Šíma Z, Vatrt V, Vojtíšková M (2004) A global vertical reference frame based on four regional vertical datums. Stud Geophys Geod 48(3):493–502

    Article  Google Scholar 

  • Burša M, Kenyon S, Kouba J, Šíma Z, Vatrt V, Vítek V, Vojtíšková M (2007) The geopotential value W0 for specifying the relativistic atomic time scale and a global vertical reference system. J Geod 81(2):103–110

    Article  Google Scholar 

  • Capuzzo Dolcetta I, Ferretti R (2001) Optimal stopping time formulation of adaptive image filtering. Appl Math Optim 43(3):245–258

    Article  Google Scholar 

  • Čunderlík R, Tenzer R, Mikula K (2014) Realization of WHS based on gravity field models free of dependencies on local vertical datums. In: Earth on the Edge: Science for a Sustainable Planet, IAG Symposia, Vol. 139, pp. 551–559

    Google Scholar 

  • Čunderlík R, Mikula K, Tunega M (2013) Nonlinear diffusion filtering of data on the Earth’s surface. J Geod 87:143–160. doi:10.1007/s00190-012-0587-y

    Article  Google Scholar 

  • Dayoub N, Edwards SJ, Moore P (2012) The Gauss-Listing potential value W0 and its rate from altimetric mean sea level and GRACE. J Geod 86:681–694. doi:10.1007/s00190-012-1547-6

    Article  Google Scholar 

  • Drinkwater MR, Haagmans R, Muzi D, Popescu A, Floberghagen R, Kern M, Fehringer M (2007) The GOCE gravity mission: ESA’s first core earth explorer. In: Proceedings of 3rd international GOCE user workshop, Frascati, Italy, 6–8 November 2006. ESA SP-627, ISBN 92-9092-938-3, pp 1–8

    Google Scholar 

  • ESA (2011) The GOCE user toolbox, version 2.0. http://earth.esa.int/gut

  • Featherstone WE, Kirby JF, Hirt C, Filmer MS, Claessens SJ, Brown NJ, Hu G, Johnston GM (2011) The AUSGeoid09 model of the Australian height datum. J Geod 85(3):133–150

    Article  Google Scholar 

  • Förste C et al (2011) EIGEN-6: a new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Presented at the 2011 general assembly of EGU, Vienna, Austria, 3–8 April 2011

    Google Scholar 

  • Huang J, Véronneau M (2013) Canadian gravimetric geoid model 2010. J Geod 87:771–790. doi:10.1007/s00190-013-0645-0

    Article  Google Scholar 

  • Ihde J (2011) Inter-commission project 1.2: vertical reference frames. Report of the International Association of Geodesy 2007–2011. http://iag.ign.fr/uploads/media/IC-P1.2.pdf

  • Mayer-Gürr T, Rieser D, Hoeck E, Brockmann M, Schuh WD, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jaeggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03s. Presented at the GGHS-2012 in Venice, Italy, 9–12 October 2012

    Google Scholar 

  • NGS (2012) USGG2012 – a refined gravimetric model of the geoid in the United States and other territories. The National Geodetic Survey. http://www.ngs.noaa.gov/GEOID/USGG2012/

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117, B04406. doi:10.1029/2011JB008916

    Google Scholar 

  • Sánchez L (2008) Approach for the establishment of a global vertical reference level. IAG Symp 132:119–124

    Google Scholar 

  • Sánchez L (2009) Strategy to establish a global vertical reference system. In: Drewes H (ed) Geodetic reference systems. Springer, Berlin. IAG Symp 134:273–278

    Google Scholar 

  • Sánchez L, Dayoub N, Čunderlík R, Minarechová Z, Mikula K, Vatrt V, Vojtíšková M, Šíma M (2015) W0 Estimates in the Frame of the GGOS Working Group on Vertical Datum Standardisation. In: Proc. of the International Symposium on Gravity, Geoid and Height Systems, IAG Symposia, Vol. 141, DOI 10.1007/978-3-319-10837-7__26

    Google Scholar 

  • Schaeffer P, Faugére Y, Legeais JF, Ollivier A, Guinle T, Picot N (2012) The CNES_CLS11 global mean sea surface computed from 16 years of satellite altimeter data. Mar Geod 35(Jason‐2):3–19. doi:10.1080/01490419.2012.718231

  • Tenzer R, Novak P, Moore P, Kuhn M, Vanicek P (2006) Explicit formula for the geoid-quasigeoid separation. Stud Geophys Geod 50(4):607–618

    Article  Google Scholar 

Download references

Acknowledgements

The work has been supported by the grant VEGA 1/1063/11 and the project APVV-0072-11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Róbert Čunderlík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Čunderlík, R., Minarechová, Z., Mikula, K. (2014). Realization of WHS Based on the Static Gravity Field Observed by GOCE. In: Marti, U. (eds) Gravity, Geoid and Height Systems. International Association of Geodesy Symposia, vol 141. Springer, Cham. https://doi.org/10.1007/978-3-319-10837-7_27

Download citation

Publish with us

Policies and ethics