Skip to main content

Transformation of Fungi Using Shock Waves

  • Chapter
  • First Online:
Genetic Transformation Systems in Fungi, Volume 1

Abstract

Genetic transformation of fungi faces major challenges. Most standard methods have a low frequency of transformation, problems of reproducibility, and are not suitable for high throughput experimentation. Additionally, there are many species of fungi that have proved recalcitrant to transformation by biolistics, electroporation, or agrobacterium transformation. We have developed a new method, based on the use of underwater shock waves that is highly efficient, simple, widely applicable, and not dependent on one particular type of tissue. Intact spores, conidia, or mycelia can be used. The method consists of the application of a few hundred shock waves to cell suspensions. Acoustic cavitation, i.e., the growth and violent collapse of microbubbles contained in the suspension, is responsible for a transient cell permeabilization. Several fungal species including, Aspergillus niger, Fusarium oxysporum, Phanerochaete chrysosporium, Trichoderma reesei, and Mycosphaerella fijiensis have been transformed successfully by this method. As an example, the methodology to transform Aspergillus niger is described in this chapter. Information on the basics of shock wave-mediated transformation of fungi is also included. Our main conclusion is that shock wave-mediated transformation is an attractive alternative for efficient fungal transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arora M, Junge L, Ohl CD (2005) Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field. Ultrasound Med Biol 31:827–839

    Article  PubMed  CAS  Google Scholar 

  • Bao S, Thrall BD, Gies RA, Miller DL (1998) In Vivo transfection of melanoma cells by lithotripter shock waves. Cancer Res 58:219–221

    PubMed  CAS  Google Scholar 

  • Bekeredjian R, Bohris C, Hansen A, Katus HA, Kuecherer HF, Hardt SE (2007) Impact of microbubbles on shock wave-mediated DNA uptake in cells in vitro. Ultrasound Med Biol 5:743–750

    Article  Google Scholar 

  • Broekhuijsen MP, Mattern IE, Contreras R, Kinghorn JR, van den Hondel CA (1993) Secretion of heterologous proteins by Aspergillus niger: production of active human interleukin-6 in a protease-deficient mutant by KEX2-like processing of a glucoamylase-hIL6 fusion protein. J Biotechnol 31:135–145

    Article  PubMed  CAS  Google Scholar 

  • Brujan EA, Ikeda T, Matsumoto Y (2008) On the pressure of cavitation bubbles. Exp Therm Fluid Sci 32:1188–1191

    Article  CAS  Google Scholar 

  • Campos-Guillén J, Fernández F, Pastrana X, Loske AM (2012) Relationship between plasmid size and shock wave-mediated bacterial transformation. Ultrasound Med Biol 38:1078–1084

    Article  PubMed  Google Scholar 

  • Canseco G, de Icaza-Herrera M, Fernández F, Loske AM (2011) Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation. Ultrasonics 51:803–810

    Article  PubMed  Google Scholar 

  • Case ME, Schweizer M, Kushner SR, Giles NH (1979) Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc Natl Acad Sci U S A 76:5259–5263

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    Article  PubMed  Google Scholar 

  • Doukas AG, Kollias N (2004) Transdermal drug delivery with a pressure wave. Adv Drug Deliv Rev 56:559–579

    Article  PubMed  CAS  Google Scholar 

  • Fincham JR (1989) Transformation in fungi. Microbiol Rev 53:148–170

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fleissner A, Dersch P (2010) Expression and export: recombinant protein production systems for Aspergillus. Appl Microbiol Biotechnol 87:1255–1270

    Article  PubMed  CAS  Google Scholar 

  • Gambihler S, Delius M, Ellwart JW (1994) Permeabilization of the plasma membrane of L1210 mouse leukemia cells using lithotripter shock waves. J Membr Biol 141:267–275

    Article  PubMed  CAS  Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast chimaeric ColEl plasmid carrying LEU2. Proc Natl Acad Sci U S A 75:1929–1933

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hutchinson HT, Hartwell LH (1967) Macromolecule synthesis in yeast spheroplasts. J Bacteriol 94:1697–1705

    Google Scholar 

  • Iimura Y, Gotoh K, Ouchi K, Nishima T (1983) Transformation of yeast without the spheroplasting process. Agric Biol Chem 47:897–901

    Article  CAS  Google Scholar 

  • Jagadeesh G, Nataraja KN, Udayakumar M (2004) Shock waves can enhance bacterial transformation with plasmid DNA. Curr Sci 87:734–735

    Google Scholar 

  • Jarai G, Buxton F (1994) Nitrogen, carbon, and pH regulation of extracellular acidic proteases of Aspergillus niger. Curr Genet 26:238–244

    Article  PubMed  CAS  Google Scholar 

  • Johnsen E, Colonius T (2008) Shock-induced collapse of a gas bubble in shock wave lithotripsy. J Acoust Soc Am 124:2011–2020

    Article  PubMed  PubMed Central  Google Scholar 

  • Kodama T, Hamblin MR, Doukas AG (2000) Cytoplasmic molecular delivery with shock waves: importance of impulse. Biophys J 79:1821–1832

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kodama T, Doukas AG, Hamblin MR (2002) Shock wave-mediated molecular delivery into cells. Biochim Biophys Acta 1542:186–194

    Article  PubMed  CAS  Google Scholar 

  • Lauer U, Burgelt E, Squire Z, Messmer K, Hofschneider PH, Gregor M, Delius M (1997) Shock wave permeabilization as a new gene transfer method. Gene Ther 4:710–715

    Article  PubMed  CAS  Google Scholar 

  • Lingeman JE (2007) Lithotripsy systems. In: Smith AD, Badlani GH, Bagley DH, Clayman RV, Docimo SG, Jordan GH, Kavoussi LR, Lee BR, Lingeman JR, Preminger GM, Segura JW (eds) Smith’s textbook on endourology. B.C. Decker, Hamilton, pp 333–342

    Google Scholar 

  • Liu Y, Yang H, Sakanishi A (2006) Ultrasound: mechanical gene transfer into plant cells by sonoporation. Biotechnol Adv 24:1–16

    Article  PubMed  CAS  Google Scholar 

  • Lorito M, Hayes CK, Di Pietro A, Harman GE (1993) Biolistic transformation of Trichoderma harzianum and Gliocladium virens using plasmid and genomic DNA. Curr Genet 24:349–356

    Article  PubMed  CAS  Google Scholar 

  • Loske AM (2007) Shock wave physics for urologists. Centro de Física Aplicada y Tecnología Avanzada, UNAM, Querétaro. ISBN 978-970-32-4377-8

    Google Scholar 

  • Loske AM, Campos-Guillén J, Fernández F, Castaño-Tostado E (2011) Enhanced shock wave-assisted transformation of Escherichia coli. Ultrasound Med Biol 37:502–510

    Article  PubMed  Google Scholar 

  • Loske AM, Fernández F, Magaña-Ortíz D, Coconi-Linares D, Ortíz-Vázquez E, Gómez-Lim MA (2014) Tandem shock waves to enhance genetic transformation of Aspergillus niger. Ultrasonics 54:1656–1662

    Article  PubMed  CAS  Google Scholar 

  • Magaña-Ortiz D, Coconi-Linares N, Ortiz-Vazquez E, Fernandez F, Loske AM, Gomez-Lim MA (2013) A novel and highly efficient method for genetic transformation of fungi employing shock waves. Fungal Genet Biol 56:9–16

    Article  PubMed  Google Scholar 

  • Mattern I, van Noort J, van den Berg P, van den Hondel C (1992) Isolation and characterization of mutants of Aspergillus niger deficient in extracellular proteases. Mol Gen Genet 234:232–236

    Article  Google Scholar 

  • Meyer V (2008) Genetic engineering of filamentous fungi, progress, obstacles and future trends. Biotechnol Adv 26:177–185

    Article  PubMed  CAS  Google Scholar 

  • Meyer V, Arentshorst M, El-Ghezal A, Drews AC, van den Kooistra R, Hondel CA, Ram AF (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128:770–775

    Article  PubMed  CAS  Google Scholar 

  • Michel MS, Erben P, Trojan L, Schaaf A, Kiknavelidze K, Knoll T, Alken P (2004) Acoustic energy: a new transfection method for cancer of the prostate, cancer of the bladder and benign kidney cells. Anticancer Res 24:2303–2308

    PubMed  CAS  Google Scholar 

  • Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48:1–17

    Article  PubMed  CAS  Google Scholar 

  • Mishra NC, Tatum EL (1973) Non-mendelian inheritance of DNA induced inositol independence in Neurospora. Proc Natl Acad Sci U S A 70:3875–3879

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Murata R, Nakagawa K, Ohtori S, Ochiai N, Arai M (2007) The effects of radial shock waves on gene transfer in rabbit chondrocytes in vitro. Osteoarthr Cartilage 15:1275–1282

    Article  CAS  Google Scholar 

  • Newman CMH, Bettinger T (2007) Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther 14:465–475

    Article  PubMed  CAS  Google Scholar 

  • Ohl CD, Ikink R (2003) Shock-wave-induced jetting of micron-size bubble. Phys Rev Lett 90:214502–214505

    Article  PubMed  CAS  Google Scholar 

  • Ozeki K, Kyoya F, Hizume K, Kanda A, Hamachi M, Nunokawa Y (1994) Transformation of intact Aspergillus niger by electroporation. Biosci Biotechnol Biochem 58:2224–2247

    Article  PubMed  CAS  Google Scholar 

  • Philipp A, Delius M, Scheffcyk C, Vogel A, Lauterborn W (1993) Interaction of lithotripter generated shock waves with air bubbles. J Acoust Soc Am 93:2496–2509

    Article  Google Scholar 

  • Punekar NS, Suresh-Kumar SV, Jayashri TN (2003) Isolation of genomic DNA from acetone-dried Aspergillus mycelia. Fungal Genet Newslett 50:15–16

    Google Scholar 

  • Punt PJ, Schuren FH, Lehmbeck J, Christensen T, Hjort C, van den Hondel CA (2008) Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes. Fungal Genet Biol 45:1591–1599

    Article  PubMed  CAS  Google Scholar 

  • Radford A, Pope S, Sazci A, Fraser MJ, Parish JH (1981) Liposome-mediated genetic transformation of Neurospora crassa. Mol Gen Genet 184:567–569

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Diez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schaaf A, Langbein S, Knoll T, Alken P, Michel MS (2003) In vitro transfection of human bladder cancer cells by acoustic energy. Anticancer Res 23:4871–4875

    PubMed  CAS  Google Scholar 

  • Su X, Schmitz G, Zhang M, Mackie RI, Cann IK (2012) Heterologous gene expression in filamentous fungi. Adv Appl Microbiol 81:1–61

    Article  PubMed  CAS  Google Scholar 

  • Thiel M (2001) Application of shock waves in medicine. Clin Orthop Relat Res 387:18–21

    Article  PubMed  Google Scholar 

  • Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissima JH, Lockington RA, Davis RW (1983) Transformation by integration in Aspergillus nidiulans. Gene 26:205–221

    Article  PubMed  CAS  Google Scholar 

  • Tschoep K, Hartmann G, Jox R, Thompson S, Eigler A, Krug A, Erhardt S, Adams G, Endres S, Delius M (2001) Shock waves: a novel method for cytoplasmic delivery of antisense oligonucleotides. J Mol Med 79:306–313

    Article  PubMed  CAS  Google Scholar 

  • Ueberle F (2011) Application of shock waves and pressure pulses in medicine. In: Kramme R, Hoffmann KP, Pozos RS (eds) Springer handbook of medical technology. Springer, Berlin, pp 641–675

    Chapter  Google Scholar 

  • van den Hombergh JPTW, van de Vondervoort PJI (1995) New protease mutants in Aspergillus niger result in strongly reduced in vitro degradation of target proteins; genetical and biochemical characterization of seven complementation groups. Curr Genet 28:299–308

    Article  PubMed  Google Scholar 

  • van den Hombergh JP, van de Vondervoort PJI, Fraissinet-Tachet L, Visser J (1997) Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotechnol 15:256–263

    Article  PubMed  Google Scholar 

  • Ward O (2012) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30:1119–1139

    Article  PubMed  CAS  Google Scholar 

  • Ward M, Lin C, Victoria DC, Fox BP, Fox JA, Wong DL, Meerman HJ, Pucci JP, Fong RB, Heng MH, Tsurushita N, Gieswein C, Park M, Wang H (2004) Characterization of humanized antibodies secreted by Aspergillus niger. Appl Environ Microbiol 70:2567–2576

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nancy Coconi, Claudia León, Elizabeth Ortiz, René Preza, Ángel Luis Rodríguez, and Guillermo Vázquez for technical assistance. This work was supported by DGAPA, UNAM Grant Number IN108410, and CONACYT Grant Number 22655.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Gómez-Lim Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gómez-Lim, M.A., Ortíz, D.M., Fernández, F., Loske, A.M. (2015). Transformation of Fungi Using Shock Waves. In: van den Berg, M., Maruthachalam, K. (eds) Genetic Transformation Systems in Fungi, Volume 1. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-10142-2_21

Download citation

Publish with us

Policies and ethics