Skip to main content

Microbial Control of Root-Pathogenic Fungi and Oomycetes

  • Chapter
  • First Online:
Principles of Plant-Microbe Interactions

Abstract

The rhizosphere is a complex and dynamic environment in which microbes introduced to control root pathogens must establish and maintain populations of sufficient size and activity to antagonize pathogens directly or by manipulating the host plant’s own defenses. Genetic and physiological studies of rhizobacteria with the capacity to control root pathogens have given considerable insight into the microbial side of these interactions, but much remains to be learned about the physical conditions and the chemical and biological activities that take place at the root-microbe interface. This chapter focuses on advances in our understanding of the constraints to the successful introduction of microbial agents for the control of soil-borne root pathogens and the mechanisms involved in pathogen suppression. Chapters elsewhere in this volume address related topics including plant growth promotion , stress control, the activation of the plant’s own defense mechanisms by introduced microbes, and powerful new biotechnological advances available to gain insight into rhizosphere processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cawoy H, Mariutto M, Henry G et al (2014) Plant defense stimulation by natural isolates of bacillus depends on efficient surfactin production. Mol Plant Microbe Interact 27:87–100

    Article  CAS  PubMed  Google Scholar 

  • D’aes J, Hua GK, De Maeyer K et al (2011) Biological control of root rot of bean by phenazines and cyclic lipopeptides-producing Pseudomonas CMR12a. Phytopathology 101:996–1004

    Article  PubMed  Google Scholar 

  • De Boer M, Bom P, Kindt F, Keurentjes JJB et al (2003) Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93:626–632

    Article  PubMed  Google Scholar 

  • Dechesne A, Smets BF (2012) Pseudomonad swarming motility is restricted to a narrow range of high matric water potentials. Appl Environ Microbiol 78:2936–2940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dechesne A, Wang G, Gülez G et al (2010) Hydration-controlled bacterial motility and dispersal on surfaces. Proc Natl Acad Sci U S A 107:14369–14372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hartney SL, Mazurier S, Kidarsa TA et al (2011) TonB-dependent outer-membrane proteins and siderophore utilization in Pseudomonas fluorescens Pf-5. BioMetals 24:193–213

    Article  CAS  PubMed  Google Scholar 

  • Höfte M (1993) Classes of microbial siderophores. In: Barton LL, Hemming BC (eds) Iron chelation in plants and soil microorganisms. Academic Press, San Diego, pp 3–26

    Chapter  Google Scholar 

  • Kamilova F, Validov S, Azarova T et al (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Gil M, Quesada JM, Ramos-González M et al (2013) Interplay between extracellular matrix components of Pseudomonas putida biofilms. Res Microbiol 164:382–389

    Article  PubMed  Google Scholar 

  • Martínez-Gil M, Ramos-González M, Espinosa-Urgel M (2014) Roles of cyclic di-GMP and the Gac system in transcriptional control of the genes coding for the Pseudomonas putida adhesins LapA and LapF. J Bacteriol 196:1484–1495

    Article  PubMed Central  PubMed  Google Scholar 

  • Mavrodi DV, Mavrodi OV, Parejko JA et al (2012) Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. Appl Environ Microbiol 78:804–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meziane H, Van der Sluis I, Van Loon LC et al (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    Article  PubMed  Google Scholar 

  • Nihorimbere V, Cawoy H, Seyer A et al (2012) Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol Ecol 79:176–191

    Article  CAS  PubMed  Google Scholar 

  • Pieterse C, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Pliego C, Kamilova F, Lugtenberg B (2011) Plant growth-promoting bacteria: fundamentals and exploitation. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Germany, pp 295–343

    Chapter  Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, de Bruijn I, Nybroe O et al (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 24:1037–1062

    Google Scholar 

  • Thomashow LS (2013) Phenazines in the environment: microbes, habitats, and ecological relevance. In: Chincholkar S, Thomashow L (eds) Microbial phenazines. Springer, Berlin, pp 199–216

    Chapter  Google Scholar 

  • Weller DM, Mavrodi DV, van Pelt JA et al (2012) Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102:403–412

    Article  CAS  PubMed  Google Scholar 

  • Xu Y (2013) Genomic features and regulation of phenazine biosynthesis in the rhizosphere strain Pseudomonas aeruginosa M18. In: Chincholkar S, Thomashow L (eds) Microbial phenazines. Springer, Berlin, pp 177–198

    Chapter  Google Scholar 

  • Yang M-M, Wen S-S, Mavrodi DV et al (2014) Biological control of wheat root diseases by the CLP-producing strain Pseudomonas fluorescens HC1-07. Phytopathology 104:248–256

    Article  CAS  PubMed  Google Scholar 

  • Zolla G, Bakker MG, Badri D et al (2013) Understanding root-microbe interactions. In: de Bruijn F (ed) Molecular microbial ecology of the rhizosphere, vol 2. Wiley Blackwell, Hoboken, New Jersey, pp 745–754

    Google Scholar 

Download references

Acknowledgements

Parts of this work were supported by USDA-NRI Grant No. 2011-67019-30212 from the USDA-NIFA Soil Processes program. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer. We thank Dr. David Weller for review comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Thomashow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thomashow, L., Bakker, P. (2015). Microbial Control of Root-Pathogenic Fungi and Oomycetes. In: Lugtenberg, B. (eds) Principles of Plant-Microbe Interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-08575-3_18

Download citation

Publish with us

Policies and ethics