Skip to main content

Alternative Room Disinfection Modalities – Pros and Cons

  • Chapter
  • First Online:
Use of Biocidal Surfaces for Reduction of Healthcare Acquired Infections

Abstract

The purpose of this Chapter is to review the efficacy, effectiveness, and efficiency of chemical fumigation and germicidal UVC irradiation use in healthcare and other related environments. The primary objective is to identify when the benefits associated with fumigation or irradiation outweigh the risks of human injury or other adverse effects. It is hypothesized that both fumigation and UV irradiation are capable of killing microorganisms; however, it is uncertain whether the benefits in terms of overall hospital patient infection rates outweigh the risks and costs associated with these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDC:

Centers for Disease Control and Prevention

CRE:

Carbapenem-resistant enterobacteriaceae

EPA:

Environmental Protection Agency

HAIs:

Healthcare-associated infections

HPV:

Hydrogen peroxide vapor

MRSA:

Methicillin-resistant Staphylococcus areus

OSHA:

Occupational Safety and Health Administration

PEL:

Permissible exposure limit

RH:

Relative humidity

TLV™:

Threshold Limit Value

UV:

Ultraviolet

UVA:

Ultraviolet A

UVB:

Ultraviolet B

UVC:

Ultraviolet C

VRE:

Vancomycin-resistant Enterococcus

References

  1. Dancer SJ, White LF, Lamb J, Girvan EK, Robertson C (2009) Measuring the effect of enhanced cleaning in a UK hospital: a prospective cross-over study. BMC Med 7:28

    Article  PubMed Central  PubMed  Google Scholar 

  2. Bhalla A, Aron DC, Donskey CJ (2007) Staphylococcus aureus intestinal colonization is associated with increased frequency of S. aureus on skin of hospitalized patients. BMC Infect Dis 7:105, pp 1–7

    Article  PubMed Central  PubMed  Google Scholar 

  3. Oie S, Suenaga S, Sawa A, Kamiya A (2007) Association between isolation sites of methicillin-resistant Staphylococcus aureus (MRSA) in patients with MRSA-positive body sites and MRSA contamination in their surrounding environmental surfaces. Jpn J Infect Dis 60(6):367–369

    PubMed  Google Scholar 

  4. Zilberberg MD, Tillotson GS, McDonald LC (2010) Clostridium difficile infections among hospitalized children, United States, 1997–2006. Emerg Infect Dis 16(4):604–609

    Article  PubMed Central  PubMed  Google Scholar 

  5. Wilcox MH et al (2003) Comparison of the effect of detergent versus hypochlorite cleaning on environmental contamination and incidence of Clostridium difficile infection. J Hosp Infect 54(2):109–114

    Article  CAS  PubMed  Google Scholar 

  6. Denton M et al (2004) Role of environmental cleaning in controlling an outbreak of Acinetobacter baumannii on a neurosurgical intensive care unit. J Hosp Infect 56(2):106–110

    Article  CAS  PubMed  Google Scholar 

  7. Baran G et al (2008) Risk factors for nosocomial imipenem-resistant Acinetobacter baumannii infections. Int J Infect Dis 12(1):16–21

    Article  PubMed  Google Scholar 

  8. APIC (2010) Guide to the elimination of multidrug-resistant Acinetobacter baumannii transmission in healthcare settings, APIC Headquarters, Washington, DC, pp 1–58

    Google Scholar 

  9. Wikswo ME, Hall AJ (2012) Outbreaks of acute gastroenteritis transmitted by person-to-person contact–United States, 2009–2010. MMWR Surveill Summ 61(9):1–12

    PubMed  Google Scholar 

  10. CDC (2009) Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR Morb Mortal Wkly Rep 58(10):256–260

    Google Scholar 

  11. Gupta N, Limbago BM, Patel JB, Kallen AJ (2011) Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis 53(1):60–67

    Article  PubMed  Google Scholar 

  12. Correa L et al (2013) A hospital-based matched case-control study to identify clinical outcome and risk factors associated with carbapenem-resistant Klebsiella pneumoniae infection. BMC Infect Dis 13:80. doi:10.1186/1471-2334-13-80

    Article  PubMed Central  PubMed  Google Scholar 

  13. Klevens RM et al (2007) Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep 122(2):160–166

    PubMed Central  PubMed  Google Scholar 

  14. Scott RD (2009) The direct medical costs of healthcare-associated infections in U.S. Hospitals and the benefits of prevention, CS200891-A. CDC, Atlanta, pp 1–13

    Google Scholar 

  15. De Angelis G, Murthy A, Beyersmann J, Harbarth S (2010) Estimating the impact of healthcare-associated infections on length of stay and costs Excess costs of healthcare-associated infection. Clin Microbiol Infect 16(12):1729–1735

    Article  PubMed  Google Scholar 

  16. Graves N et al (2010) Estimating the cost of health care GÇö associated infections: mind your p’s and q’s. Clin Infect Dis 50(7):1017–1021

    Article  PubMed  Google Scholar 

  17. Neidell MJ et al (2012) Costs of healthcare- and community-associated infections with antimicrobial-resistant versus antimicrobial-susceptible organisms. Clin Infect Dis 55(6):807–815

    Article  PubMed Central  PubMed  Google Scholar 

  18. Stone PW et al (2010) CMS changes in reimbursement for HAIs: setting a research agenda. Med Care 48(5):433–439

    Article  PubMed Central  PubMed  Google Scholar 

  19. Stewart DB, Hollenbeak CS (2011) Clostridium difficile colitis: factors associated with outcome and assessment of mortality at a national level. J Gastrointest Surg 15(9):1548–1555

    Article  PubMed  Google Scholar 

  20. Duckro AN, Blom DW, Lyle EA, Weinstein RA, Hayden MK (2005) Transfer of vancomycin-resistant enterococci via health care worker hands. Arch Intern Med 165(3):302–307

    Article  PubMed  Google Scholar 

  21. de Lassence A et al (2006) Control and outcome of a large outbreak of colonization and infection with glycopeptide-intermediate Staphylococcus aureus in an intensive care unit. Clin Infect Dis 42(2):170–178

    Article  PubMed  Google Scholar 

  22. CDC (2003) Guidelines for environmental infection control in health-care facilities: recommendations of the CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). MMWR 52(RR-10):1–48

    Google Scholar 

  23. Boyce JM, Potter-Bynoe G, Chenevert C, King T (1997) Environmental contamination due to methicillin-resistant Staphylococcus aureus: possible infection control implications. Infect Control Hosp Epidemiol 18(9):622–627

    Article  CAS  PubMed  Google Scholar 

  24. Catalano M, Quelle LS, Jeric PE, Di MA, Maimone SM (1999) Survival of Acinetobacter baumannii on bed rails during an outbreak and during sporadic cases. J Hosp Infect 42(1):27–35

    Article  CAS  PubMed  Google Scholar 

  25. Wu HM et al (2005) A norovirus outbreak at a long-term-care facility: the role of environmental surface contamination. Infect Control Hosp Epidemiol 26(10):802–810

    Article  PubMed  Google Scholar 

  26. Kuijper EJ, Coignard B, Tull P (2006) Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect 12(Suppl 6):2–18

    Article  CAS  PubMed  Google Scholar 

  27. Huang R, Mehta S, Weed D, Price CS (2006) Methicillin-resistant Staphylococcus aureus survival on hospital fomites. Infect Control Hosp Epidemiol 27(11):1267–1269

    Article  PubMed  Google Scholar 

  28. Sexton T, Clarke P, O’Neill E, Dillane T, Humphreys H (2006) Environmental reservoirs of methicillin-resistant Staphylococcus aureus in isolation rooms: correlation with patient isolates and implications for hospital hygiene. J Hosp Infect 62(2):187–194

    Article  CAS  PubMed  Google Scholar 

  29. Boyce JM (2007) Environmental contamination makes an important contribution to hospital infection. J Hosp Infect 65(Suppl 2):50–54

    Article  PubMed  Google Scholar 

  30. Boyce JM et al (2008) Impact of hydrogen peroxide vapor room decontamination on Clostridium difficile environmental contamination and transmission in a healthcare setting. Infect Control Hosp Epidemiol 29(8):723–729

    Article  PubMed  Google Scholar 

  31. Weaver L, Michels HT, Keevil CW (2008) Survival of Clostridium difficile on copper and steel: futuristic options for hospital hygiene. J Hosp Infect 68(2):145–151

    Article  CAS  PubMed  Google Scholar 

  32. Drees M et al (2008) Prior environmental contamination increases the risk of acquisition of vancomycin-resistant enterococci. Clin Infect Dis 46(5):678–685

    Article  CAS  PubMed  Google Scholar 

  33. Barbut F, Menuet D, Verachten M, Girou E (2009) Comparison of the efficacy of a hydrogen peroxide dry-mist disinfection system and sodium hypochlorite solution for eradication of Clostridium difficile spores. Infect Control Hosp Epidemiol 30(6):507–514

    Article  CAS  PubMed  Google Scholar 

  34. Lu PL et al (2009) Methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii on computer interface surfaces of hospital wards and association with clinical isolates. BMC Infect Dis 9:164

    Article  PubMed Central  PubMed  Google Scholar 

  35. Wendt C, Dietze B, Dietz E, Ruden H (1997) Survival of Acinetobacter baumannii on dry surfaces. J Clin Microbiol 35(6):1394–1397

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Wagenvoort JH, Sluijsmans W, Penders RJ (2000) Better environmental survival of outbreak vs. sporadic MRSA isolates. J Hosp Infect 45(3):231–234

    Article  CAS  PubMed  Google Scholar 

  37. French GL et al (2004) Tackling contamination of the hospital environment by methicillin-resistant Staphylococcus aureus (MRSA): a comparison between conventional terminal cleaning and hydrogen peroxide vapour decontamination. J Hosp Infect 57(1):31–37

    Article  CAS  PubMed  Google Scholar 

  38. Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:130

    Article  PubMed Central  PubMed  Google Scholar 

  39. Wheeldon LJ et al (2008) Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory. J Antimicrob Chemother 62(3):522–525

    Article  CAS  PubMed  Google Scholar 

  40. Kim KH et al (1981) Isolation of Clostridium difficile from the environment and contacts of patients with antibiotic-associated colitis. J Infect Dis 143(1):42–50

    Article  CAS  PubMed  Google Scholar 

  41. Snyder GM et al (2008) Detection of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on the gowns and gloves of healthcare workers. Infect Control Hosp Epidemiol 29(7):583–589

    Article  PubMed Central  PubMed  Google Scholar 

  42. Fijan S, Turk SS (2012) Hospital textiles, are they a possible vehicle for healthcare-associated infections? Int J Environ Res Public Health 9(9):3330–3343

    Article  PubMed Central  PubMed  Google Scholar 

  43. Jawad A, Seifert H, Snelling AM, Heritage J, Hawkey PM (1998) Survival of Acinetobacter baumannii on dry surfaces: comparison of outbreak and sporadic isolates. J Clin Microbiol 36(7):1938–1941

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Akerlund T et al (2008) Increased sporulation rate of epidemic Clostridium difficile Type 027/NAP1. J Clin Microbiol 46(4):1530–1533

    Article  PubMed Central  PubMed  Google Scholar 

  45. Cohen B, Hyman S, Rosenberg L, Larson E (2012) Frequency of patient contact with health care personnel and visitors: implications for infection prevention. Jt Comm J Qual Patient Saf 38(12):560–565

    PubMed Central  PubMed  Google Scholar 

  46. CDC (2002) Guideline for hand hygiene in health-care settings: recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. MMWR 51(RR-16):1–48

    Google Scholar 

  47. Edwards J, Patel G, Wareham DW (2007) Low concentrations of commercial alcohol hand rubs facilitate growth of and secretion of extracellular proteins by multidrug-resistant strains of Acinetobacter baumannii. J Med Microbiol 56(Pt 12):1595–1599

    Article  CAS  PubMed  Google Scholar 

  48. Streifel AJ, Stevens PP, Rhame FS (1987) In-hospital source of airborne Penicillium species spores. J Clin Microbiol 25(1):1–4

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Rice N, Streifel A, Vesley D (2001) An evaluation of hospital special-ventilation-room pressures. Infect Control Hosp Epidemiol 22(1):19–23

    Article  CAS  PubMed  Google Scholar 

  50. Rydock JP, Eian PK (2004) Containment testing of isolation rooms. J Hosp Infect 57(3):228–232

    Article  CAS  PubMed  Google Scholar 

  51. Smith PW et al (2006) Designing a biocontainment unit to care for patients with serious communicable diseases: a consensus statement. Biosecur Bioterror 4(4):351–365

    Article  PubMed  Google Scholar 

  52. Saravia SA, Raynor PC, Streifel AJ (2007) A performance assessment of airborne infection isolation rooms. Am J Infect Control 35(5):324–331

    Article  PubMed  Google Scholar 

  53. Friedman H, Volin E, Laumann D (1968) Terminal disinfection in hospitals with quaternary ammonium compounds by use of a spray-fog technique. Appl Microbiol 16(2):223–227

    CAS  PubMed Central  PubMed  Google Scholar 

  54. CDC (2001) Update: investigation of bioterrorism-related anthrax and interim guidelines for exposure management and antimicrobial therapy, October 2001. MMWR Morb Mortal Wkly Rep 50(42):909–919

    Google Scholar 

  55. Andersen BM et al (2006) Decontamination of rooms, medical equipment and ambulances using an aerosol of hydrogen peroxide disinfectant. J Hosp Infect 62(2):149–155

    Article  CAS  PubMed  Google Scholar 

  56. Berrington AW, Pedler SJ (1998) Investigation of gaseous ozone for MRSA decontamination of hospital side-rooms. J Hosp Infect 40(1):61–65

    Article  CAS  PubMed  Google Scholar 

  57. Burton NC, Adhikari A, Iossifova Y, Grinshpun SA, Reponen T (2008) Effect of gaseous chlorine dioxide on indoor microbial contaminants. J Air Waste Manag Assoc 58(5):647–656

    Article  CAS  PubMed  Google Scholar 

  58. Clark J, Barrett SP, Rogers M, Stapleton R (2006) Efficacy of super-oxidized water fogging in environmental decontamination. J Hosp Infect 64(4):386–390

    Article  CAS  PubMed  Google Scholar 

  59. Lowe JJ, Gibbs SG, Iwen PC, Smith PW, Hewlett AL (2013) Decontamination of a hospital room using gaseous chlorine dioxide: Bacillus anthracis, Francisella tularensis, and Yersinia pestis. J Occup Environ Hyg 10(10):533–539

    Article  CAS  PubMed  Google Scholar 

  60. EPA (2005) Compilation of available data on building decontamination alternatives, EPA/600/R-05/036. EPA, Washington, DC, pp 1–182

    Google Scholar 

  61. ACGIH (2014) TLVs and BEIs, American Conference of Governmental Industrial Hygienists, Cincinnati, pp 10–62

    Google Scholar 

  62. Avdeev SM, Velichevskaya KY, Sosnin EA, Tarasenko VF, Lavrenteva LV (2008) Analysis of germicidal action of UV radiation of excimer and exciplex lamps. Light Eng 16(4):32

    Google Scholar 

  63. Cutler T et al (2011) Kinetics of UV254 inactivation of selected viral pathogens in a static system. J Appl Microbiol 111(2):389–395

    Article  CAS  PubMed  Google Scholar 

  64. IARC (2005) Exposure to artificial UV radiation and skin cancer. World Health Organization, Geneva, pp 1–64

    Google Scholar 

  65. Weese JS, Lowe T, Walker M (2012) Use of fluorescent tagging for assessment of environmental cleaning and disinfection in a veterinary hospital. Vet Rec 171(9):217

    Article  CAS  PubMed  Google Scholar 

  66. Archier E et al (2012) Efficacy of psoralen UV-A therapy vs. narrowband UV-B therapy in chronic plaque psoriasis: a systematic literature review. J Eur Acad Dermatol Venereol 26(Suppl 3):11–21

    Article  CAS  PubMed  Google Scholar 

  67. Lee CH, Wu SB, Hong CH, Yu HS, Wei YH (2013) Molecular mechanisms of UV-induced apoptosis and its effects on skin residential cells: the implication in UV-based phototherapy. Int J Mol Sci 14(3):6414–6435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Reed NG (2010) The history of ultraviolet germicidal irradiation for air disinfection. Public Health Rep 125(1):15–27

    PubMed Central  PubMed  Google Scholar 

  69. Lau J, Bahnfleth W, Mistrick R, Kompare D (2012) Ultraviolet irradiance measurement and modeling for evaluating the effectiveness of in-duct ultraviolet germicidal irradiation devices. HVAC & R Res 18(4):626–642. ISSN 1078-9669

    Google Scholar 

  70. Rudnick SN, First MW (2007) Fundamental factors affecting upper-room ultraviolet germicidal irradiation – part II. Predicting effectiveness. J Occup Environ Hyg 4(5):352–362

    Article  CAS  PubMed  Google Scholar 

  71. Rudnick SN, First MW, Vincent RL, Brickner PW (2009) In-place testing of in-duct ultraviolet germicidal irradiation. HVAC&R Res 15(3):525–535

    Article  Google Scholar 

  72. Chang D, Young C (2007) Effect of turbulence on ultraviolet germicidal irradiation. J Archit Eng 13(3):152–161

    Article  Google Scholar 

  73. Moore G et al (2012) Use of UV-C radiation to disinfect non-critical patient care items: a laboratory assessment of the Nanoclave Cabinet. BMC Infect Dis 12:174

    Article  PubMed Central  PubMed  Google Scholar 

  74. Nerandzic MM, Cadnum JL, Eckart KE, Donskey CJ (2012) Evaluation of a hand-held far-ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens. BMC Infect Dis 12:120

    Article  PubMed Central  PubMed  Google Scholar 

  75. Hardy KJ et al (2007) Rapid recontamination with MRSA of the environment of an intensive care unit after decontamination with hydrogen peroxide vapour. J Hosp Infect 66(4):360–368

    Article  CAS  PubMed  Google Scholar 

  76. Krause J, McDonnell G, Riedesel H (2001) Biodecontamination of animal rooms and heat-sensitive equipment with vaporized hydrogen peroxide. Contemp Top Lab Anim Sci 40(6):18–21

    CAS  PubMed  Google Scholar 

  77. Otter JA, Cummins M, Ahmad F, van Tonder C, Drabu YJ (2007) Assessing the biological efficacy and rate of recontamination following hydrogen peroxide vapour decontamination. J Hosp Infect 67(2):182–188

    Article  CAS  PubMed  Google Scholar 

  78. Hustinx WN et al (1993) Systemic effects of inhalational methyl bromide poisoning: a study of nine cases occupationally exposed due to inadvertent spread during fumigation. Br J Ind Med 50(2):155–159

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Langard S, Rognum T, Flotterod O, Skaug V (1996) Fatal accident resulting from methyl bromide poisoning after fumigation of a neighbouring house; leakage through sewage pipes. J Appl Toxicol 16(5):445–448

    Article  CAS  PubMed  Google Scholar 

  80. EPA (2009) Fumigant technologies used to inactivate biological agents on indoor materials. EPA, Washington, DC

    Google Scholar 

  81. First MW, Weker RA, Yasui S, Nardell EA (2005) Monitoring human exposures to upper-room germicidal ultraviolet irradiation. J Occup Environ Hyg 2(5):285–292

    Article  PubMed  Google Scholar 

  82. Nardell EA et al (2008) Safety of upper-room ultraviolet germicidal air disinfection for room occupants: results from the Tuberculosis Ultraviolet Shelter Study. Public Health Rep 123(1):52–60

    PubMed Central  PubMed  Google Scholar 

  83. Kujundzic E, Matalkah F, Howard CJ, Hernandez M, Miller SL (2006) UV air cleaners and upper-room air ultraviolet germicidal irradiation for controlling airborne bacteria and fungal spores. J Occup Environ Hyg 3(10):536–546

    Article  PubMed  Google Scholar 

  84. Katara G, Hemvani N, Chitnis S, Chitnis V, Chitnis DS (2008) Surface disinfection by exposure to germicidal UV light. Indian J Med Microbiol 26(3):241–242

    Article  CAS  PubMed  Google Scholar 

  85. Fisher EM, Shaffer RE (2011) A method to determine the available UV-C dose for the decontamination of filtering facepiece respirators. J Appl Microbiol 110(1):287–295

    Article  CAS  PubMed  Google Scholar 

  86. Menetrez MY, Foarde KK, Webber TD, Dean TR, Betancourt DA (2006) Efficacy of UV irradiation on eight species of Bacillus. J Environ Eng Sci 5(4):329–334

    Article  Google Scholar 

  87. Tseng CC, Li CS (2007) Inactivation of viruses on surfaces by ultraviolet germicidal irradiation. J Occup Environ Hyg 4(6):400–405

    Article  PubMed  Google Scholar 

  88. Bauermeister A, Moeller R, Reitz G, Sommer S, Rettberg P (2011) Effect of relative humidity on Deinococcus radiodurans’ resistance to prolonged desiccation, heat, ionizing, germicidal, and environmentally relevant UV radiation. Microb Ecol 61(3):715–722

    Article  CAS  PubMed  Google Scholar 

  89. Nerandzic MM, Cadnum JL, Eckart KE, Donskey CJ (2012) Evaluation of a hand-held far-ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens. BMC Infect Dis 12:120. doi:10.1186/1471-2334-12-120

    Article  PubMed Central  PubMed  Google Scholar 

  90. Moeller R, Wassmann M, Reitz G, Setlow P (2011) Effect of radioprotective agents in sporulation medium on Bacillus subtilis spore resistance to hydrogen peroxide, wet heat and germicidal and environmentally relevant UV radiation. J Appl Microbiol 110(6):1485–1494

    Article  CAS  PubMed  Google Scholar 

  91. Nhung le TT et al (2012) Sterilization effect of UV light on Bacillus spores using TiO(2) films depends on wavelength. J Med Invest 59(1–2):53–58

    Article  PubMed  Google Scholar 

  92. Lucas R, McMichael T, Smith W, Armstrong B (2006) Solar ultraviolet radiation: global burden of disease from solar ultraviolet radiation, Environmental Burden of Disease Series, No. 13. World Health Organization, Geneva, pp 1–250

    Google Scholar 

  93. Ayala F, Palla M, Di TR, Mozzillo N, Ascierto PA (2013) The role of optical radiations in skin cancer. ISRN Dermatol. 2013:842359. doi:10.1155/2013/842359

    Google Scholar 

  94. NTP (2011) Report on carcinogens, 12th edn, Report on carcinogens. National Institutes of Health, Research Triangle Park, pp 429–534

    Google Scholar 

  95. Ben SM, Masahiro O, Hassen A (2010) Detection of viable but non cultivable Escherichia coli after UV irradiation using a lytic Qbeta phage. Ann Microbiol 60(1):121–127

    Article  Google Scholar 

  96. Kim JK, Petin VG, Morozov II (2005) Quantitative evaluation of the parameters of bacterial photoreactivation after exposure to ultraviolet light and ionizing radiation. Int J Radiat Biol 81(1):55–62

    Article  CAS  PubMed  Google Scholar 

  97. Quek PH, Hu J (2008) Influence of photoreactivating light intensity and incubation temperature on photoreactivation of Escherichia coli following LP and MP UV disinfection. J Appl Microbiol 105(1):124–133

    Article  CAS  PubMed  Google Scholar 

  98. EPA (2008) Reregistration eligibility decision for formaldehyde and paraformaldehyde, EPA 739-R-08-004. EPA, Washington, DC, pp 1–87

    Google Scholar 

  99. Wilson SC et al (2005) Effect of chlorine dioxide gas on fungi and mycotoxins associated with sick building syndrome. Appl Environ Microbiol 71(9):5399–5403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. ACOEM (2002) Adverse human health effects associated with molds in the indoor environment, ACOEM Evidence-based Statement, American College of Occupational and Environmental Medicine, Elk Grove Village, pp 1–10

    Google Scholar 

  101. Byrns G, Fuller TP (2011) The risks and benefits of chemical fumigation in the health care environment. J Occup Environ Hyg 8(2):104–112

    Article  PubMed  Google Scholar 

  102. Otter JA et al (2009) Feasibility of routinely using hydrogen peroxide vapor to decontaminate rooms in a busy United States hospital. Infect Control Hosp Epidemiol 30(6):574–577

    Article  PubMed  Google Scholar 

  103. Memarzadeh F (2013) Literature review: room ventilation and airborne disease transmission, ASHE catalog #: 055584. American Society for Healthcare Engineering, Chicago, pp 1–46

    Google Scholar 

  104. Goodman ER et al (2008) Impact of an environmental cleaning intervention on the presence of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on surfaces in intensive care unit rooms. Infect Control Hosp Epidemiol 29(7):593–599

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Byrns MPH, Ph.D., CIH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Byrns, G. (2014). Alternative Room Disinfection Modalities – Pros and Cons. In: Borkow, G. (eds) Use of Biocidal Surfaces for Reduction of Healthcare Acquired Infections. Springer, Cham. https://doi.org/10.1007/978-3-319-08057-4_9

Download citation

Publish with us

Policies and ethics