Skip to main content

Calorimetric Probes for Energy Flux Measurements in Process Plasmas

  • Chapter
  • First Online:
Complex Plasmas

Abstract

This chapter gives an overview of the method of calorimetric probes which are used for characterizing the interaction between low-temperature plasmas and substrates in materials processing. Although the focus is on low-temperature non-equilibrium plasmas most of the concepts can also be transferred to thermal plasmas or are in fact adopted from fusion research. An introductory section showing the importance and complexity of plasma wall interactions is followed by a section providing an overview and comparison of various probe concepts, which have been developed in the last decades. Special focus is on the type of probes which are similar to the probes used by J.A. Thornton (In fact, Thornton was not the first, to use this type of probe. From his work from 1978 [1], one can follow the citations back to the work of Jackson in 1969, who used equation (6.7) for the determination of the power dissipated by a copper block located at substrate position in a sputtering discharge [2]) who was one of the pioneers connecting plasma characteristics with resulting surface properties. Thereafter, a short section gives a basic overview of the different contributions to the total energy influx and which are of importance for the plasma wall interaction. The last section shows different examples of applications of calorimetric probes. It demonstrates the applicability and flexibility of these types of probes for characterization of different low-temperature plasmas. The examples mainly focus on complex plasmas, where the variety of the involved processes also causes a specific plasma wall interaction. Such complex situations can be found in systems where reactive gases or gas mixtures, nano or micro particles (dust), magnetic fields or large surface to volume ratios are involved.

Sections of this chapter are reprinted from: Sven Bornholdt: Particle and Energy Fluxes During Plasma Based Deposition of Nanostructured Materials. PhD thesis, Kiel University (2013)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Thornton, Thin Solid Films 54(1), 23 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  2. G. Jackson, Vacuum 19(11), 493 (1969)

    Article  Google Scholar 

  3. P. Stangeby, G. McCracken, Nucl. Fusion 30(7), 1225 (1990)

    Article  Google Scholar 

  4. K. Nishiyama, Y. Morita, G. Uchida, D. Yamashita, K. Kamataki, H. Seo, N. Itagaki, K. Koga, M. Shiratani, N. Ashikawa, S. Masuzaki, K. Nishimura, A. Sagara, the LHD Experimental Group, S. Bornholdt, H. Kersten, J. Nucl. Mater. doi:10.1016/j.jnucmat.2013.01.169. Accepted.

  5. J. Girard, P. Garin, N. Taylor, J. Uzan-Elbez, L. Rodríguez-Rodrigo, W. Gulden, Fusion Eng. Des. 82(5), 506 (2007)

    Article  Google Scholar 

  6. N. Taylor, D. Baker, S. Ciattaglia, P. Cortes, J. Elbez-Uzan, M. Iseli, S. Reyes, L. Rodriguez-Rodrigo, S. Rosanvallon, L. Topilski, Fusion Eng. Des. 86(6), 619 (2011)

    Article  Google Scholar 

  7. J. Thornton, J. Vac. Sci. Technol. 11(4), 666 (1974)

    Article  ADS  Google Scholar 

  8. H. Deutsch, H. Kersten, S. Klagge, A. Rutscher, Contrib. Plasma. Phys. 28(2), 149 (1988)

    Article  ADS  Google Scholar 

  9. H. Deutsch, H. Kersten, A. Rutscher, Contrib. Plasma. Phys. 29(3), 263 (1989)

    Article  ADS  Google Scholar 

  10. J. Thornton, Annu. Rev. Mater. Sci. 7(1), 239 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  11. R. Gardon, Rev. Sci. Instrum. 24(5), 366 (1953)

    Article  ADS  Google Scholar 

  12. C. Abbot, Smithsonian Misc. Coll. 56(19) (1911)

    Google Scholar 

  13. P. Stier, C. Barnett, G. Evans, Phys. Rev. 96(4), 973 (1954)

    Article  ADS  Google Scholar 

  14. A. Thomann, N. Semmar, R. Dussart, J. Mathias, V. Lang, Rev. Sci. Instrum. 77(3), 033501 (2006)

    Article  ADS  Google Scholar 

  15. C. Roth, A. Spillmann, A. Sonnenfeld, P. von Rohr, Plasma Processes Polym. 6(S1), S566 (2009)

    Article  Google Scholar 

  16. R. Wiese, H. Kersten, Galvanotechnik 99(6) (2008)

    Google Scholar 

  17. H. Kersten, G. Kroesen, R. Hippler, Thin Solid Films 332(1–2), 282 (1998)

    Article  ADS  Google Scholar 

  18. S. Ekpe, S. Dew, J. Vac. Sci. Technol. A 22, 1420 (2004)

    Article  ADS  Google Scholar 

  19. C. Paturaud, G. Farges, M. Sainte Catherine, J. Machet, Surf. Coat. Technol. 98(1–3), 1257 (1998)

    Article  Google Scholar 

  20. T. Drüsedau, T. Bock, T. John, F. Klabunde, W. Eckstein, J. Vac. Sci. Technol. A 17, 2896 (1999)

    Article  ADS  Google Scholar 

  21. M. Čada, P. Virostko, Š. Kment, Z. Hubička, Plasma Processes Polym. 6(S1), S247 (2009)

    Article  Google Scholar 

  22. T. Drüsedau, K. Koppenhagen, Surf. Coat. Technol. 153(2–3), 155 (2002)

    Article  Google Scholar 

  23. S. Bornholdt, T. Peter, T. Strunskus, V. Zaporojtchenko, F. Faupel, H. Kersten, Surf. Coat. Technol. 205, 388 (2011)

    Article  Google Scholar 

  24. H. Kersten, D. Rohde, J. Berndt, H. Deutsch, R. Hippler, Thin Solid Films 377, 585 (2000)

    Article  ADS  Google Scholar 

  25. D. Lundin, M. Stahl, H. Kersten, U. Helmersson, J. Phys. D: Appl. Phys. 42, 185202 (2009)

    Article  ADS  Google Scholar 

  26. V. Stranak, M. Cada, Z. Hubicka, M. Tichy, R. Hippler, J. Appl. Phys. 108(4), 043305 (2010)

    Article  ADS  Google Scholar 

  27. W. Leroy, S. Konstantinidis, S. Mahieu, R. Snyders, D. Depla, J. Phys. D: Appl. Phys. 44(11), 115201 (2011)

    Article  ADS  Google Scholar 

  28. P. Cormier, A. Balhamri, A. Thomann, R. Dussart, N. Semmar, J. Mathias, R. Snyders, S. Konstantinidis, J. Appl. Phys. 113(1), 013305 (2013)

    Article  ADS  Google Scholar 

  29. H. Kersten, G. Kroesen, Contrib. Plasma. Phys. 30(6), 725 (1990)

    Article  ADS  Google Scholar 

  30. H. Kersten, D. Steffen, D. Vender, H. Wagner, Vacuum 46(3), 305 (1995)

    Article  Google Scholar 

  31. H. Kersten, D. Rohde, H. Steffen, H. Deutsch, R. Hippler, G. Swinkels, G. Kroesen, Appl. Phys. A 72(5), 531 (2001)

    Article  ADS  Google Scholar 

  32. H. Kersten, E. Stoffels, W. Stoffels, M. Otte, C. Csambal, H. Deutsch, R. Hippler, J. Appl. Phys. 87(8), 3637 (2000)

    Article  ADS  Google Scholar 

  33. G. Makrinich, A. Fruchtman, S. Shitrit, G. Appelbaum, J. Ashkenazy, in IEPC Proceedings (2005), pp. 1–6

    Google Scholar 

  34. R. Dussart, A. Thomann, L. Pichon, L. Bedra, N. Semmar, P. Lefaucheux, J. Mathias, Y. Tessier, Appl. Phys. Lett. 93, 131502 (2008)

    Article  ADS  Google Scholar 

  35. M. Wolter, M. Stahl, H. Kersten, Vacuum 83(4), 768 (2008)

    Article  Google Scholar 

  36. M. Wolter, M. Stahl, H. Kersten, Plasma Processes Polym. 6(S1), S626 (2009)

    Article  Google Scholar 

  37. M. Stahl, T. Trottenberg, H. Kersten, Rev. Sci. Instrum. 81, 023504 (2010)

    Article  ADS  Google Scholar 

  38. C. Roth, S. Bornholdt, V. Zuber, A. Sonnenfeld, H. Kersten, P. Rudolf von Rohr, J. Appl. Phys. 44, 095201 (2011)

    Google Scholar 

  39. C. Roth, G. Oberbossel, P. von Rohr, J. Phys. D: Appl. Phys. 45(35), 355202 (2012)

    Article  Google Scholar 

  40. E. Stoffels, R. Sladek, I. Kieft, H. Kersten, R. Wiese, Plasma Phys. Contr. F. 46, B167 (2004)

    Article  Google Scholar 

  41. S. Bornholdt, M. Wolter, H. Kersten, Eur. Phys J. D 60(3), 653 (2010)

    Article  ADS  Google Scholar 

  42. S. Khrapak, G. Morfill, Phys. Plasmas 13, 104506 (2006)

    Article  ADS  Google Scholar 

  43. H. Maurer, R. Basner, H. Kersten, Rev. Sci. Instrum. 79, 093508 (2008)

    Article  ADS  Google Scholar 

  44. D. Kondepudi, Introduction to Modern Thermodynamics (Wiley, Chichester, 2008)

    Google Scholar 

  45. D. Ball, J. Appl. Phys. 43(7), 3047 (1972)

    Article  ADS  Google Scholar 

  46. G. Golan, A. Axelevitch, J. Optoelectron. Adv. M. 5(5), 1417 (2003)

    Google Scholar 

  47. G. Makrinich, A. Fruchtman, J. Appl. Phys. 100, 093302 (2006)

    Article  ADS  Google Scholar 

  48. E. Stamate, H. Sugai, K. Ohe, Appl. Phys. Lett. 80(17), 3066 (2002)

    Article  ADS  Google Scholar 

  49. M. Čada, J. Bradley, G. Clarke, P. Kelly, J. Appl. Phys. 102, 063301 (2007)

    Article  ADS  Google Scholar 

  50. H. Steffen, H. Kersten, H. Wulff, J. Vac. Sci. Technol. A 12(5), 2780 (1994)

    Article  ADS  Google Scholar 

  51. J. Thornton, J. Vac. Sci. Technol. 12(4), 830 (1975)

    Article  ADS  Google Scholar 

  52. H. Jouhara, S. Saloum, M. Alsous, Vacuum 86, 1898 (2012)

    Article  ADS  Google Scholar 

  53. K. Ellmer, R. Mientus, Surf. Coat. Technol. 116, 1102 (1999)

    Article  Google Scholar 

  54. K. Harbauer, T. Welzel, K. Ellmer, Thin Solid Films 520, 6429 (2012)

    Article  ADS  Google Scholar 

  55. T. Welzel, K. Harbauer, F. Kreis, M. Kellermeier, K. Ellmer, Characterisation of a combined plasma sensor and its application to a magnetron sputtering discharge. Poster Contribution at the 13th International Conference on Plasma Surface Engineering - PSE (2012)

    Google Scholar 

  56. C. Cho, G. Fralick, H. Bhatt, Meas. Sci. Technol. 8(7), 721 (1999)

    Article  ADS  Google Scholar 

  57. S. Oh, K. Lee, J. Chun, M. Kim, S. Lee, J. Micromech. Microeng. 11(3), 221 (2001)

    Article  ADS  Google Scholar 

  58. M. Freed, M. Krüger, K. Poolla, C. Spanos, IEEE T. Semiconduct. M 18(1), 148 (2005)

    Article  Google Scholar 

  59. M. Stahl, Energiestrommessungen in Prozessplasmen. Diploma Thesis, Kiel University, 2009

    Google Scholar 

  60. R. Wendt, K. Ellmer, K. Wiesemann, J. Appl. Phys. 82(5), 2115 (1997)

    Article  ADS  Google Scholar 

  61. R. Ash, W. Weller, R. Wright, Rev. Sci. Instrum. 41(7), 1112 (1970)

    Article  ADS  Google Scholar 

  62. A. Murthy, B. Tsai, R. Saunders, Metrologia 35(4), 501 (2003)

    Article  ADS  Google Scholar 

  63. J. Ballestrin, C. Estrada, M. Rodríguez-Alonso, C. Pérez-Rábago, L. Langley, A. Barnes, Metrologia 41(4), 314 (2004)

    Article  ADS  Google Scholar 

  64. J. Ballestrin, C. Estrada, M. Rodríguez-Alonso, C. Perez-Rabago, L. Langley, A. Barnes, Sol. Energy 80(10), 1314 (2006)

    Article  ADS  Google Scholar 

  65. P. Cormier, M. Stahl, A. Thomann, R. Dussart, M. Wolter, N. Semmar, J. Mathias, H. Kersten, J. Phys. D: Appl. Phys. 43(46), 465201 (2010)

    Article  ADS  Google Scholar 

  66. L. Bedra, A. Thomann, N. Semmar, R. Dussart, J. Mathias, J. Phys. D: Appl. Phys. 43(6), 065202 (2010)

    Article  ADS  Google Scholar 

  67. R. Dussard, A.L. Thomann, N. Semmar, Microsensors (InTech, 2011), Chap. A Heat Flux Microsensor for Direct Measurements in Plasma Surface Interactions (2011)

    Google Scholar 

  68. R. Wiese, H. Kersten, G. Wiese, M. Häckel, Vakuum in Forschung und Praxis 23(3), 20 (2011)

    Article  Google Scholar 

  69. K. Ellmer, J. Phys. D: Appl. Phys. 33(4), 17 (2000)

    Article  ADS  Google Scholar 

  70. R. Wiese, H. Kersten, M. Hannemann, V. Sittinger, F. Ruske, R. Menner, Plasma Processes Polym. 4(1), 527 (2007)

    Article  Google Scholar 

  71. S. Schlichtherle, G. Strauss, H. Pulker, Vakuum in Forschung und Praxis 23(5), 27 (2011)

    Article  Google Scholar 

  72. H. Kersten, H. Deutsch, H. Steffen, G. Kroesen, R. Hippler, Vacuum 63(3), 385 (2001)

    Article  Google Scholar 

  73. J. Schulze, E. Schüngel, U. Czarnetzki, J. Phys. D: Appl. Phys. 42(9), 092005 (2009)

    Article  ADS  Google Scholar 

  74. S. Bornholdt, J. Ye, S. Ulrich, H. Kersten, J. Appl. Phys. 112(12), 123301 (2012)

    Article  ADS  Google Scholar 

  75. S. Bornholdt, N. Itagki, K. Kuwahara, H. Wulff, M. Shiratani, H. Kersten (To be submitted)

    Google Scholar 

  76. K. Ellmer, T. Welzel, J. Mater. Res. 1(1), 1 (2012)

    Google Scholar 

  77. T. Trottenberg, A. Spethmann, V. Schneider, M. Stahl, M. Giesenhagen, H. Kersten, Contrib. Plasma. Phys. 52(7), 584 (2012)

    Article  ADS  Google Scholar 

  78. H. Do, H. Kersten, R. Hippler, New J. Phys. 10(5), 053010 (2008)

    Article  ADS  Google Scholar 

  79. F. Aumayr, H. Winter, Philosophical transactions of the royal society of London. Ser. A: Math. Phys. Eng. Sci. 362(1814), 77 (2004)

    Google Scholar 

  80. G. Betz, K. Wien, Int. J. Mass Spectrom. 140(1), 1 (1994)

    Article  ADS  Google Scholar 

  81. B. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching (Wiley New York, 1980)

    Google Scholar 

  82. V. Schneider, T. Trottenberg, I. Teliban, H. Kersten, Rev. Sci. Instrum. 81(1), 013503 (2010)

    Article  ADS  Google Scholar 

  83. T. Trottenberg, A. Spethmann, J. Rutscher, H. Kersten, Plasma Phys. Contr. F. 54 (2012)

    Google Scholar 

  84. I. Hutchinson, Principles of Plasma Diagnostics (Cambridge University Press, 2002)

    Google Scholar 

  85. M. Wolter, I. Levchenko, H. Kersten, K. Ostrikov, Appl. Phys. Lett. 96(13), 133105 (2010)

    Article  ADS  Google Scholar 

  86. I. Suhariadi, K. Matsushim, K. Kuwahara, K. Oshikawa, D. Yamashita, H. Seo, G. Uchida, K. Kamtaki, K. Koga, M. Shiratani, S. Bornholdt, H. Kersten, H. Wulff, N. Itagaki, Jpn. J. Appl. Phys. 52, 01AC08 (2013)

    Google Scholar 

  87. R. Weast, CRC Handbook of Chemistry and Physics, 48th edn. (The Chemical Rubber Company, 1968)

    Google Scholar 

  88. A. Napartovich, Plasmas Polym. 6(1), 1 (2001)

    Google Scholar 

  89. R. Foest, E. Kindel, A. Ohl, M. Stieber, K. Weltmann, Plasma Phys. Contr. Fusion 47(12B), B525 (2005)

    Article  Google Scholar 

  90. R. Foest, M. Schmidt, K. Becker, Int. J. Mass Spectrom. 248(3), 87 (2006)

    Article  ADS  Google Scholar 

  91. A. Schütze, J. Jeong, S. Babayan, J. Park, G. Selwyn, R. Hicks, IEEE T. Plasma. Sci. 26(6), 1685 (1998)

    Article  ADS  Google Scholar 

  92. G. Selwyn, H. Herrmann, J. Park, I. Henins, Contrib. Plasma. Phys. 41(6), 610 (2001)

    Article  ADS  Google Scholar 

  93. E. Stoffels, A. Flikweert, W. Stoffels, G. Kroesen, Plasma Sources Sci. T. 11(4), 383 (2002)

    Article  ADS  Google Scholar 

  94. Z. Cao, J. Walsh, M. Kong, Appl. Phys. Lett. 94(2), 021501 (2009)

    Article  ADS  Google Scholar 

  95. K. Weltmann, R. Brandenburg, T. Von Woedtke, J. Ehlbeck, R. Foest, M. Stieber, E. Kindel, J. Phys. D: Appl. Phys. 41(19), 194008 (2008)

    Article  ADS  Google Scholar 

  96. M. Noeske, J. Degenhardt, S. Strudthoff, U. Lommatzsch, Int. J. Adhes. Adhes. 24(2), 171 (2004)

    Article  Google Scholar 

  97. M. Laroussi, C. Tendero, X. Lu, S. Alla, W. Hynes, Plasma Processes Polym. 3(6–7), 470 (2006)

    Article  Google Scholar 

  98. R. Brandenburg, J. Ehlbeck, M. Stieber, J. Zeymer, O. Schlüter, K. Weltmann et al., Contrib. Plasma. Phys. 47(1–2), 72 (2007)

    Article  ADS  Google Scholar 

  99. J. Walsh, M. Kong, Appl. Phys. Lett. 91(22), 221502 (2007)

    Article  ADS  Google Scholar 

  100. M. Laroussi, W. Hynes, T. Akan, X. Lu, C. Tendero, IEEE T. Plasma. Sci. 36(4), 1298 (2008)

    Article  ADS  Google Scholar 

  101. J. Meister, G. Böhm, I. Eichentopf, T. Arnold, Plasma Processes Polym. 6(S1), S209 (2009)

    Article  Google Scholar 

  102. J. Meister, T. Arnold, Plasma Chem. Plasma Process. 31(1), 91 (2011)

    Article  Google Scholar 

  103. NEOPLAS GmbH, www.neoplas.eu (2009)

    Google Scholar 

  104. K. Fricke, H. Tresp, R. Bussiahn, K. Schröder, T. von Woedtke, K. Weltmann, Plasma Chem. Plasma Process. 32, 801 (2012)

    Article  Google Scholar 

  105. R. Foest, T. Bindemann, R. Brandenburg, E. Kindel, H. Lange, M. Stieber, K. Weltmann, Plasma Processes Polym. 4(S1), S460 (2007)

    Article  Google Scholar 

  106. Q. Nie, C. Ren, D. Wang, J. Zhang, Appl. Phys. Lett. 93(1), 011503 (2008)

    Article  ADS  Google Scholar 

  107. J. Walsh, M. Kong, Appl. Phys. Lett. 93(11), 111501 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank M. Stahl, T. Trottenberg, V. Schneider, N. Bergemann, J. Teliban, N. Itagaki, K. Koga, G. Uchida, K. Kuwahara, K. Nishiyama, M. Shiratani, H. Wulff, M. Häckel and K.D. Weltmann for their kind contributions. Also the fruitful discussions with M. Wolter, J. Ye, S. Ulrich, A. Winter, T. Peter. V. Zaporojchenko, T. Strunskus, F. Faupel, P.A. Cormier, A.L. Thomann, D. Lundin, U. Helmerson, C. Roth, V. Zuber, A. Sonnenfeld, P. Rudolph von Rohr and K. Ostrikov are greatfully acknowledged. This work were financially supported under the DFG via SFB/TR 24 project B13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Bornholdt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bornholdt, S., Fröhlich, M., Kersten, H. (2014). Calorimetric Probes for Energy Flux Measurements in Process Plasmas. In: Bonitz, M., Lopez, J., Becker, K., Thomsen, H. (eds) Complex Plasmas. Springer Series on Atomic, Optical, and Plasma Physics, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-05437-7_6

Download citation

Publish with us

Policies and ethics