Advertisement

Dynamic Control of UVMSs

  • Gianluca Antonelli
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 96)

Abstract

This chapter addresses the dynamic control of UVMSs.

References

  1. 1.
    H. Mahesh, J. Yuh, R. Lakshmi, Control of underwater robots in working mode, in Proceedings of 1991 IEEE International Conference on Robotics and Automation, 1991, IEEE, 1991, pp. 2630–2635Google Scholar
  2. 2.
    H. Mahesh, J. Yuh, R. Lakshmi, A coordinated control of an underwater vehicle and robotic manipulator. J. Robot. Syst. 8(3), 339–370 (1991)CrossRefMATHGoogle Scholar
  3. 3.
    T. Fossen, Adaptive macro-micro control of nonlinear underwater robotic systems, in Fifth International Conference on Advanced Robotics, ‘Robots in Unstructured Environments’, 1991, 91 ICAR, IEEE, 1991, pp. 1569–1572Google Scholar
  4. 4.
    N. Kato, D. Lane, Co-ordinated control of multiple manipulators in underwater robots, in Proceedings of 1996 IEEE International Conference on Robotics and Automation, 1996, vol. 3, IEEE, Minneapolis, Minnesota, 1996, pp. 2505–2510Google Scholar
  5. 5.
    N. Sakagami, M. Shibata, S. Kawamura, T. Inoue, H. Onishi, S. Murakami, An attitude control system for underwater vehicle-manipulator systems, in 2010 IEEE International Conference on Robotics and Automation (ICRA), 2010, pp. 1761–1767Google Scholar
  6. 6.
    N. Sakagami, T. Ueda, M. Shibata, S. Kawamura, Pitch and roll control using independent movable floats for small underwater robots, in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011, pp. 4756–4761Google Scholar
  7. 7.
    M.W. Dunnigan, G.T. Russell, Reduction of the dynamic coupling between a manipulator and ROV using variable structure control, in International Conference on Control, 1994, Control’94, IET, 1994, pp. 1578–1583Google Scholar
  8. 8.
    M.W. Dannigan, G.T. Russell, Evaluation and reduction of the dynamic coupling between a manipulator and an underwater vehicle. IEEE J. Oceanic Eng. 23(3), 260–273 (1998)CrossRefGoogle Scholar
  9. 9.
    G.B. Chung, K.S. Eom, B.-J. Yi, I.H. Suh, S.-R. Oh, W.K. Chung, J. Kim, Disturbance observer-based robust control for underwater robotic systems with passive joints. Adv. Robot. 15(5), 575–588 (2001)CrossRefGoogle Scholar
  10. 10.
    M. Lee, H.-S. Choi, A robust neural controller for underwater robot manipulators. IEEE Trans. Neural Netw. 11(6), 1465–1470 (2000)CrossRefGoogle Scholar
  11. 11.
    S.R. Pandian, N. Sakagami, A neuro-fuzzy controller for underwater robot manipulators, in 11th International Conference on Control Automation Robotics Vision (ICARCV), 2010, 2010, pp. 2135–2140Google Scholar
  12. 12.
    P. Fraisse, L. Lapierre, P. Dauchez, F. Pierrot, Position/force control of an underwater vehicle equipped with a robotic manipulator, in 6th IFAC Symposium on Robot Control, Austria, Wien, 2000, pp. 475–479Google Scholar
  13. 13.
    J.H. Ryu, D.-S. Kwon, P.-M. Lee, Control of underwater manipulators mounted on an ROV using base force information, in Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, 2001, vol. 4, IEEE, Seoul, Korea, 2001, pp. 3238–3243Google Scholar
  14. 14.
    S. Kawamura, N. Sakagami, Analysis on dynamics of underwater robot manipulators based on iterative learning control and time-scale transformation, in Proceedings of IEEE International Conference on Robotics and Automation, 2002, ICRA’02, vol. 2, IEEE, Washington, DC, 2002, pp. 1088–1094Google Scholar
  15. 15.
    J. Kim, W.K. Chung, J. Yuh, Dynamic analysis and two-time scale control for underwater vehicle-manipulator systems, in Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003, (IROS 2003), vol. 1, IEEE, 2003, pp. 577–582Google Scholar
  16. 16.
    M. Ishitsuka, S. Sagara, K. Ishii, Dynamics analysis and resolved acceleration control of an autonomous underwater vehicle equipped with a manipulator, in 2004 International Symposium on Underwater Technology, 2004, UT’04, IEEE, Taipei, Taiwan, 2004, pp. 277–281Google Scholar
  17. 17.
    M. Ishitsuka, K. Ishii, Development of an underwater manipulator mounted for an AUV, in Proceedings of MTS/IEEE OCEANS, 2005, 2005, pp. 1811–1816Google Scholar
  18. 18.
    Y.C. Sun, C.C. Cheah, Adaptive setpoint control of underwater vehicle-manipulator systems, in 2004 IEEE Conference on Robotics, Automation and Mechatronics, vol. 1, IEEE, Singapore, 2004, pp. 434–439Google Scholar
  19. 19.
    E. Marchand, F. Chaumette, F. Spindler, M. Perrier, Controlling the manipulator of an underwater ROV using a coarse calibrated pan/tilt camera, in Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, 2001, vol. 3, IEEE, Seoul, Korea, 2001, pp. 2773–2778Google Scholar
  20. 20.
    M. Prats, D. Ribas, N. Palomeras, J.C. García, V. Nannen, S. Wirth, J.J. Fernández, J.P. Beltrán, R. Campos, P. Ridao et al., Reconfigurable AUV for intervention missions: a case study on underwater object recovery. Intell. Serv. Robot. 5(1), 19–31 (2012)CrossRefGoogle Scholar
  21. 21.
    J. Fernández, M. Prats, P. Sanz, J. C. García Sánchez, R. Marin, M. Robinson, D. Ribas, P. Ridao, Manipulation in the seabed: a new underwater robot arm for shallow water intervention. IEEE Robot. Autom. Mag. (2013)Google Scholar
  22. 22.
    T.W. McLain, S.M. Rock, M.J. Lee, Coordinated control of an underwater robotic system, in Video Proceedings of the 1996 IEEE International Conference on Robotics and Automation, 1996, pp. 4606–4613Google Scholar
  23. 23.
    T.W. McLain, S.M. Rock, M.J. Lee, Experiments in the coordinated control of an underwater arm/vehicle system. Auton. Robot. 3(2), 213–232 (1996)CrossRefGoogle Scholar
  24. 24.
    T.J. Tarn, S.P. Yang, Modeling and control for underwater robotic manipulators—an example, in Proceedings of 1997 IEEE International Conference on Robotics and Automation, 1997, vol. 3, IEEE, Albuquerque, NM, 1997, pp. 2166–2171Google Scholar
  25. 25.
    T.J. Tarn, G.A. Shoults, S.P. Yang, A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method. Auton. Robot. 3(2), 269–283 (1996)CrossRefGoogle Scholar
  26. 26.
    I. Schjølberg, T. Fossen, Modelling and control of underwater vehicle-manipulator systems, in Proceedings of 3rd Conference on Marine Craft maneuvering and control, Southampton, UK, 1994, pp. 45–57Google Scholar
  27. 27.
    I. Schjølberg, Modeling and Control of Underwater Robotic Systems. Ph.D. thesis, Doktor ingeniør degree, Norwegian University of Science and Technology, Trondheim, Norway, 1996Google Scholar
  28. 28.
    C. Canudas de Wit, E. Olguin Diaz, M. Perrier, Robust nonlinear control of an underwater vehicle/manipulator system with composite dynamics, in Proceedings of 1998 IEEE International Conference on Robotics and Automation, 1998, IEEE, Leuven, Belgium, 1998, pp. 452–457Google Scholar
  29. 29.
    C. Canudas de Wit, O. Olguin Diaz, M. Perrier, Control of underwater vehicle/manipulator with composite dynamics, in Proceedings of the 1998 American Control Conference, 1998, vol. 1, IEEE, 1998, pp. 389–393Google Scholar
  30. 30.
    C. Canudas de Wit, O. Olguin Diaz, M. Perrier, Nonlinear control of an underwater vehicle/manipulator with composite dynamics. IEEE Trans. Control Syst. Technol. 8(6), 948–960 (2000)CrossRefGoogle Scholar
  31. 31.
    E. Olguin Diaz, Modélisation et Commande d’un Système Véhicule/Manipulateur Sous-Marin (in French). Ph.D. thesis, Docteur de l’Institut National Polytechnique de Grenoble, Grenoble, France, 1999Google Scholar
  32. 32.
    P.-M. Lee, J. Yuh, Application of non-regressor based adaptive control to an underwater mobile platform-mounted manipulator, in Proceedings of the 1999 IEEE International Conference on Control Applications, 1999, vol. 2, IEEE, Kohala Coast, Hawaii, 1999, pp. 1135–1140Google Scholar
  33. 33.
    N. Sarkar, J. Yuh, T.K. Podder, Adaptive control of underwater vehicle-manipulator systems subject to joint limits, in Proceedings. 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1999, IROS’99, vol. 1, IEEE, 1999, pp. 142–147Google Scholar
  34. 34.
    J. Yuh, An adaptive and learning control system for underwater robots, in 13th World Congress International Federation of Automatic Control, California, San Francisco, 1996, pp. 145–150Google Scholar
  35. 35.
    S.K. Choi, J. Yuh, Experimental study on a learning control system with bound estimation for underwater robots. Auton. Robot. 3(2), 187–194 (1996)CrossRefGoogle Scholar
  36. 36.
    J. Nie, J. Yuh, E. Kardash, T. Fossen, On-board sensor-based adaptive control of small UUVS in very shallow water. Int. J. Adapt. Control Signal Process. 14(4), 441–452 (2000)CrossRefGoogle Scholar
  37. 37.
    J. Yuh, J. Nie, C.S.G. Lee, Experimental study on adaptive control of underwater robots, in Proceedings of 1999 IEEE International Conference on Robotics and Automation, 1999, IEEE, 1999, pp. 393–398Google Scholar
  38. 38.
    S. Zhao, J. Yuh, Experimental study on advanced underwater robot control. IEEE Trans. Robot. 21(4), 695–703 (2005)CrossRefGoogle Scholar
  39. 39.
    J. Yuh, S. Zhao, P.-M. Lee, Application of adaptive disturbance observer control to an underwater manipulator, in Proceedings of 2001 IEEE International Conference on Robotics and Automation, 2001, ICRA, vol. 4, IEEE, Seoul, Korea, 2001, pp. 3244–3249Google Scholar
  40. 40.
    G. Marani, J. Yuh, S.K. Choi, Autonomous manipulation for an intervention AUV. IEE Control Eng. Ser. 69, 217 (2006)Google Scholar
  41. 41.
    G. Marani, S.K. Choi, J. Yuh, Underwater autonomous manipulation for intervention missions AUVs. Ocean Eng. 36(1), 15–23 (2009)CrossRefGoogle Scholar
  42. 42.
    G. Marani, S.K. Choi, J. Yuh, Real-time center of buoyancy identification for optimal hovering in autonomous underwater intervention. Intell. Serv. Robot. 3(3), 175–182 (2010)CrossRefGoogle Scholar
  43. 43.
    V. Utkin, Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    K.K. Young, Controller design for a manipulator using theory of variable structure systems. IEEE Trans. Syst. Man Cybern. 8(2), 101–109 (1978)CrossRefMATHGoogle Scholar
  45. 45.
    J.J. Slotine, W. Li, Applied Nonlinear Control, vol. 199 (Prentice hall, New Jersey, 1991)Google Scholar
  46. 46.
    O.E. Fjellstad, T.I. Fossen, Singularity-free tracking of unmanned underwater vehicles in 6 DOF, in Proceedings of the 33rd IEEE Conference on Decision and Control, 1994, vol. 2, IEEE, 1994, pp. 1128–1133Google Scholar
  47. 47.
    O. Egeland, J.-M. Godhavn, Passivity-based adaptive attitude control of a rigid spacecraft. IEEE Trans. Autom. Control 39(4), 842–846 (1994)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    J.J. Slotine, M. Di Benedetto, Hamiltonian adaptive control of spacecraft. IEEE Trans. Autom. Control 35(7), 848–852 (1990)CrossRefMATHGoogle Scholar
  49. 49.
    A. Healey, D. Lienard, Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Oceanic Eng. 18(3), 327–339 (1993)CrossRefGoogle Scholar
  50. 50.
    R. Ortega, M. Spong, Adaptive motion control of rigid robots: a tutorial. Automatica 25(6), 877–888 (1989)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    J.J.E. Slotine, W. Li, On the adaptive control of robot manipulators. Int. J. Robot. Res. 6(3), 49–59 (1987)CrossRefGoogle Scholar
  52. 52.
    T. Fossen, J.G. Balchen et al., The NEROV autonomous underwater vehicle, in Proceeding Conference Oceans 91, Citeseer, Honolulu, HI, 1991Google Scholar
  53. 53.
    T.I. Fossen, O. Fjellstad, Robust adaptive control of underwater vehicles: a comparative study, in IFAC Workshop on Control Applications in Marine Systems, IEEE, Trondheim, Norway, 1995, pp. 66–74Google Scholar
  54. 54.
    F. Lizarralde, J.T. Wen, L. Hsu, Quaternion-based coordinated control of a subsea mobile manipulator with only position measurements, in Proceedings of the 34th IEEE Conference on Decision and Control, 1995, vol. 4, IEEE, New Orleans, Louisiana, 1995, pp. 3996–4001Google Scholar
  55. 55.
    H. Berghuis, H. Nijmeijer, A passivity approach to controller-observer design for robots. IEEE Trans. Robot. Autom. 9(6), 740–754 (1993)CrossRefGoogle Scholar
  56. 56.
    G. Antonelli, S. Chiaverini, Adaptive tracking control of underwater vehicle-manipulator systems, IEEE Conference on Control Applications, Trieste, Italy, Sept 1998, pp. 1089–1093Google Scholar
  57. 57.
    J. Yuh, Modeling and control of underwater robotic vehicles. IEEE Trans. Syst. Man Cybern. 20(6), 1475–1483 (1990)CrossRefGoogle Scholar
  58. 58.
    T. Fossen, Guidance and Control of Ocean Vehicles (Wiley, Chichester, 1994)Google Scholar
  59. 59.
    H. Khalil, Nonlinear Systems (Prentice Hall, Upper Saddle River, 1996)Google Scholar
  60. 60.
    S.W. Shepperd, Quaternion from rotation matrix. J. Guid. Control 1, 223 (1978)MATHGoogle Scholar
  61. 61.
    J.J. Slotine, W. Li, Adaptive strategies in constrained manipulation, in Proceedings of 1987 IEEE International Conference on Robotics and Automation, IEEE, Raleigh, NC, 1987, pp. 595–601Google Scholar
  62. 62.
    W.H. Zhu, Y.-G. Xi, Z.-J. Zhang, Z. Bien, J. De Schutter, Virtual decomposition based control for generalized high dimensional robotic systems with complicated structure. IEEE Trans. Robot. Autom. 13(3), 411–436 (1997)CrossRefGoogle Scholar
  63. 63.
    W.H. Zhu, Virtual Decomposition Control: Toward Hyper Degrees of Freedom Robots, vol. 60 (Springer, New York, 2010)Google Scholar
  64. 64.
    W.H. Zhu, T. Lamarche, E. Dupuis, D. Jameux, P. Barnard, G. Liu, Precision control of modular robot manipulators: the VDC approach with embedded FPGA. IEEE Trans. Robot. (2013)Google Scholar
  65. 65.
    G. Antonelli, F. Caccavale, S. Chiaverini, A virtual decomposition based approach to adaptive control of underwater vehicle-manipulator systems, in 9th Mediterranean Conference on Control and Automation, Dubrovnik, HR, June 2001Google Scholar
  66. 66.
    G. Antonelli, F. Caccavale, S. Chiaverini, Adaptive tracking control of underwater vehicle-manipulator systems based on the virtual decomposition approach. IEEE Trans. Robot. Autom. 20(3), 594–602 (June 2004)Google Scholar
  67. 67.
    R.E. Roberson, R. Schwertassek, Dynamics of Multibody Systems, vol. 18 (Springer, Berlin, 1988)Google Scholar
  68. 68.
    L.L. Whitcomb, D. Yoerger, Development, comparison, and preliminary experimental validation of nonlinear dynamic thruster models. IEEE J. Oceanic Eng. 24(4), 481–494 (1999)CrossRefGoogle Scholar
  69. 69.
    G. Antonelli, S. Chiaverini, Task-priority redundancy resolution for underwater vehicle-manipulator systems, in Proceedings of 1998 IEEE International Conference on Robotics and Automation, Leuven, May 1998, pp. 768–773Google Scholar
  70. 70.
    G. Antonelli, S. Chiaverini, in Fuzzy Inverse Kinematics for Underwater Vehicle-Manipulator Systems, ed. by J. Lenarc̆ic̆, M.M. Stanis̆ić. Advances in Robot Kinematics. 7th International Symposium on Advances in Robot Kinematics, Piran-Portoro\(\check{\text{ z }}\), SLO, June 2000 (NL Kluwer Academic Publishers, Dordrecht, 2000), pp. 249–256Google Scholar
  71. 71.
    G. Antonelli, S. Chiaverini, A fuzzy approach to redundancy resolution for underwater vehicle-manipulator systems, in Proceedings 5th IFAC Conference on Manoeuvring and Control of Marine Craft, Aalborg, Denmark, Aug 2000Google Scholar
  72. 72.
    G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco, A modular control law for underwater vehicle-manipulator systems adapting on a minimun set of parameters, in 15th Ifac World Congress, Barcelona, Spain, July 2002Google Scholar
  73. 73.
    G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco, A novel adaptive control law for autonomous underwater vehicles, in Proceedings of 2001 IEEE International Conference on Robotics and Automation, Seoul, KR, May, 2001, pp. 447–451Google Scholar
  74. 74.
    G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco, On the use of integral control actions for autonomous underwater vehicles, in 2001 European Control Conference, Porto, Sept 2001Google Scholar
  75. 75.
    G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco, A novel adaptive control law for underwater vehicles. IEEE Trans. Control Syst. Technol. 11(2), 221–232 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Elettrica e dell’InformazioneUniversità di Cassino e Lazio MeridionaleCassinoItaly

Personalised recommendations