The mode-sensing hypothesis: Matching sensors, actuators and flight dynamics

  • Holger G. Krapp
  • Graham K. Taylor
  • J. Sean Humbert

Abstract

Here we elaborate upon the recent hypothesis that the sensory systems of insects are matched to their flight dynamics, such that they are configured to make or encode measurements within a modal coordinate system. This hypothesis is inspired by several distinctive organizational principles of insect sensory systems: namely, that insects appear to be configured a) to sense relative, rather than absolute, quantities; b) to make measurements in highly non-orthogonal axis systems; and c) to fuse sensory inputs from different modalities prior to using them as feedback to the actuators. Having elaborated upon the hypothesis itself and considered the functional advantages of the resulting control architecture, we discuss some of the physiological details of how the requisite coordinate systems might in practice be set up in the fly visual system. We also provide a mathematical framework for testing the quantitative match between sensory system and flight dynamics in the specific context of the visual systems of flies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12: 297–306PubMedCrossRefGoogle Scholar
  2. Borst A, Egelhaaf M, Haag J (1995) Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. J Comput Neurosci 2: 5–1837PubMedCrossRefGoogle Scholar
  3. Borst A, Haag J (2002) Neural networks in the cockpit of the fly. J Comp Physiol A 188: 419–437CrossRefGoogle Scholar
  4. Buchner E (1984) Behavioural analysis of spatial vision in insects. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York, pp. 561–621CrossRefGoogle Scholar
  5. Dahmen H, Franz M, Krapp HG (2001) Extracting ego-motion from optic flow: limits of accuracy and neuronal filters. In: Zanker JM, Zeil J (eds) Processing visual motion in the real world — A survey of computational, neural and ecological constraints. Springer Verlag, Berlin, Heidelberg, New York, pp. 143–168Google Scholar
  6. Egelhaaf M, Borst A (1993) Movement detection in arthropods. Rev Oculomot Res 5: 53–77PubMedGoogle Scholar
  7. Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha A-K (2002) Neuronal encoding of behaviourally relevant visual-motion information in the fly. Trends Neurosci 25: 94–100CrossRefGoogle Scholar
  8. Faruque I, Humbert JS (2010). Dipteran insect flight dynamics: Part 1: Longitudinal motions about hover. J Theo Biol 264: 538–552CrossRefGoogle Scholar
  9. Faruque I, Humbert JS (2010). Dipteran insect flight dynamics: Part 2: Lateral-directional motions about hover. J Theo Biol 265: 306–313CrossRefGoogle Scholar
  10. Franz MO, Krapp HG (2000) Wide-field, motionsensitive neurons and optimal matched filters for optic flow. Biol Cybern 83: 185–197PubMedCrossRefGoogle Scholar
  11. Franz MO, Chahl JS, Krapp HG (2004) Insect inspired estimation of self-motion. Neural Comput 16: 2245–2260PubMedCrossRefGoogle Scholar
  12. Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, BostonGoogle Scholar
  13. Goodman L (1981) Organisation and physiology of the insect dorsal ocellar system. In: Autrum H (ed) Handbook of sensory physiology, Volume VII/6 C, Springer Verlag, Berlin, pp. 201–181Google Scholar
  14. Haag J, Borst A (2001) Recurrent network interactions underlying flow-field selectivity of visual interneurons. J Neuosci 21: 5685–5692Google Scholar
  15. Haag J, Borst A (2004) Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons. Nat Neurosci 7: 628–634PubMedCrossRefGoogle Scholar
  16. Haag J, Wertz A, Borst A (2007) Integration of lobula plate output signals by DNOVS1, an identified premotor descending neuron. J Neurosci 27: 1992–2000PubMedCrossRefGoogle Scholar
  17. Hardie RC (1986) The photoreceptor array of the dipteran retina. Trends Neurosci 9: 419–423CrossRefGoogle Scholar
  18. Harris RA, O’Carroll DC, Laughlin SB (2000) Contrast gain reduction in fly motion adaptation. Neuron 28: 595–606PubMedCrossRefGoogle Scholar
  19. Hausen K (1982) Motion sensitive interneurons in the optomotor system of the fly I. The horizontal cells — structure and signals. Biol Cybern 45: 143–156CrossRefGoogle Scholar
  20. Hausen K (1993) Decoding of retinal image flow in insects. Rev Oculomot Res 5: 203–235PubMedGoogle Scholar
  21. Heide G (1983). Neural mechanism of flight control in Diptera. In: Nachtigall W (ed) BIONA report, Vol. 2, Akad Wiss Mainz, Gustav Fischer, Stuttgart, New York, pp. 35–52Google Scholar
  22. Hengstenberg R (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J Comp Physiol A 149: 179–193CrossRefGoogle Scholar
  23. Hengstenberg R (1991) Gaze control in the blowfly Calliphora: A multisensory two-stage integration process. The Neurosciences 3: 19–29CrossRefGoogle Scholar
  24. Hengstenberg R (1993) Multisensory control in insect oculomotor systems. Rev Oculomot Res 5: 285–298PubMedGoogle Scholar
  25. Huston SJ, Krapp HG (2008) Visuomotor transformation in the fly gaze stabilization system. PLoS Biol 6: 1468–1478CrossRefGoogle Scholar
  26. Huston SJ, Krapp HG (2009) Non-linear integration of visual and haltere inputs in fly neck motor neurons. J Neurosci 29: 13 097–13 105CrossRefGoogle Scholar
  27. Karmeier K, Tabor R, Egelhaaf M, Krapp HG (2001) Early visual experience and the receptive field organization of optic flow processing interneurons in the fly motion pathway. Vis Neurosci 18: 1–8PubMedCrossRefGoogle Scholar
  28. Karmeier K, Krapp HG, Egelhaaf M (2003) Robustness of the tuning of fly visual interneurons to rotatory optic flow. J Neurophysiol 90: 1626–1634PubMedCrossRefGoogle Scholar
  29. Karmeier K, Krapp HG, Egelhaaf M (2005) Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly. J Neurophysiol 94: 2182–2194PubMedCrossRefGoogle Scholar
  30. Karmeier K, van Hateren JH, Kern R, Egelhaaf M (2006) Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons. J Neurophysiol 96: 1602–1614PubMedCrossRefGoogle Scholar
  31. Koenderink J, van Doorn A (1987) Facts on optic flow. Biol Cybern 56: 247–254PubMedCrossRefGoogle Scholar
  32. Krapp HG, Hengstenberg R (1996) Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384: 447–468CrossRefGoogle Scholar
  33. Krapp HG, Hengstenberg B, Henstenberg R (1998) Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J Neurophysiol 79: 1902–1917PubMedGoogle Scholar
  34. Krapp HG (2000) Neuronal matched filters for optic flow processing in flying insects. Int Rev Neurobiol 44: 93–120PubMedCrossRefGoogle Scholar
  35. Krapp HG, Hengstenberg R, Egelhaaf M (2001) Binocular input organization of optic flow processing interneurons in the fly visual system. J Neurophysiol 85: 724–734PubMedGoogle Scholar
  36. Krapp HG, Wicklein M (2008) Central processing of visual information in insects. In: Basbaum AI, Kaneko A, Shepherd GM, Westheimer G. (eds) The senses: A comprehensive reference. Vol. 1, Vision I, Masland R, Albright TD (eds) Academic Press, San Diego, pp. 131–204CrossRefGoogle Scholar
  37. Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M (2005) On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway. J Neurosci 25: 6435–6448PubMedCrossRefGoogle Scholar
  38. Longden KD, Krapp HG (2009) State-dependent receptive field properties of optic flow processing interneurons. J Neurophysiol 102: 3606–3618PubMedCrossRefGoogle Scholar
  39. Nalbach G (1994) Extremely non-orthogonal axes in a sense organ for rotation: behavioural analysis of the dipteran haltere system. Neurosci 61: 155–163CrossRefGoogle Scholar
  40. Parsons MM, Krapp HG, Laughlin SB (2006) A motion-sensitive neurone responds to signals from the two visual systems of the blowfly, the compound eyes and ocelli. J Exp Biol 209: 4464–4474PubMedCrossRefGoogle Scholar
  41. Parsons MM, Krapp HG, Laughlin SB (2010) Sensor fusion in identified visual interneurons. Curr Biol 20: 624–628PubMedCrossRefGoogle Scholar
  42. Petrowitz R, Dahmen H, Egelhaaf M, Krapp HG (2000) Arrangement of optical axes and the spatial resolution in the compound eye of the female blowfly. J Comp Physiol A 186: 737–746PubMedCrossRefGoogle Scholar
  43. Reichardt W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Principles of sensory communications. Wiley, New York, pp. 303–317Google Scholar
  44. Schuling FH, Mastebroek HAK, Bult R, Lenting BPM (1989) Properties of elementary movement detectors in the fly Calliphora erythrocephala. J Comp Physiol A 165: 179–192CrossRefGoogle Scholar
  45. Simmons PJ, Jian S, Rind FC (1993) Responses in vivo to light signals by large, 2nd-order ocellar neurons of the blowfly, Calliphora erythrocephala. J Physiol Lond 473: 244–244Google Scholar
  46. Srinivasan MV, Zhang S, Chahl JS (2001) Landing strategies in honeybees, and possible applications to autonomous airborne vehicles. Biol Bull, 200: 216–221PubMedCrossRefGoogle Scholar
  47. Stevens BL, Lewis FL (2003) Aircraft control and simulation, 2nd edn. Hoboken, Wiley, New YorkGoogle Scholar
  48. Tarokh M (1992) Measures of controllability, observability, and fixed modes. IEEE Trans Autom Control 37: 1268–1273CrossRefGoogle Scholar
  49. Taylor GK, Thomas ALR (2003) Dynamic flight stability in the desert locust Schistocerca gregaria. J Exp Biol 206: 2803–2829PubMedCrossRefGoogle Scholar
  50. Taylor GK, Krapp HG (2007) Sensory systems and flight stability: What do insects measure and why? Adv Insect Physiol 34: 231–316CrossRefGoogle Scholar
  51. Wertz A, Gaub B, Plett J, Haag J, Borst A (2009) Robust coding of ego-motion in descending neurons of the fly. J Neurosci 29: 14993–15000PubMedCrossRefGoogle Scholar
  52. White JA, Rubenstein JT, Kay AR (2000) Channel noise in neurons. Trends Neurosci 23: 131PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  • Holger G. Krapp
    • 1
  • Graham K. Taylor
  • J. Sean Humbert
  1. 1.Department of Bioengineering, Royal School of MinesImperial College LondonLondonUK

Personalised recommendations