Skip to main content

Decision-making in foraging by social insects

  • Chapter
Information Processing in Social Insects

Summary

How are foraging decisions determined in social insects? Investigations implemented within the framework of the optimal foraging theory bring evolutionary and functional answers. In this respect, decisions of solitary foragers like bumblebees seem to be ruled by an optimization of the energy (and time) invested among different feeding sites. Similarly, in insects which can forage collectively, like ants or honeybees, decisions have been interpreted in terms of energetic reward assigned to single workers without any reference to recruitment. Evidence, however, supports the idea that (time and energy) investments in recruitment of nestmates can also alter foraging decisions of the individual. Additional questions arise as to how an insect processes information about food resources and environmental constraints and decides whether or not to recruit nestmates. In ants, adaptive collective decisions emerge from numerous interactions among individuals which use local information and follow simple decisional algorithms to modulate their recruiting behavior. The environment itself contributes to the emergence of foraging decisions by altering the dynamics of recruitment and trail reinforcement. Several experimental and theoretical findings will lead us to re-consider the level of complexity of information processing and coding needed for the emergence of adaptive foraging patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tinbergen N (1951) The study of instinct. Oxford University Press, Oxford

    Google Scholar 

  2. Wehner R, Harkness RD, Schmid-Hempel P (1983) Foraging strategies in individually searching ants Cataglyphis bicolor (Hym-enoptera: formicidae). In: M Lindauer (ed): Information processing in animals. G. Fischer, Stuttgart, 1–79

    Google Scholar 

  3. Schmid-Hempel P (1987) Foraging characteristics of the desert ant Cataglyphis. In: J Pasteels and JL Deneubourg (Eds): From individual to collective behavior in social insects. Birkhäuser, Basel, 43–63

    Google Scholar 

  4. Fresneau D (1985) Individual foraging and patch fidelity in a ponerine ant. Insect Soc 32: 109–116

    Article  Google Scholar 

  5. Maynard Smith J (1978) Optimization theory in evolution? Annu Rev Ecol Syst 9: 31–56

    Article  Google Scholar 

  6. Stephen DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  7. Krebs JR, Davies NB (1992) Behavioural ecology: an evolutionary approach. Blackwell Scientific Publications, Oxford

    Google Scholar 

  8. Orians GH, Pearson NE (1979) On the theory of central place foraging. In: DJ Horn, GR Stairs, RD Mitchell (eds): Analysis of ecological systems. Ohio State University Press, Columbus

    Google Scholar 

  9. Harder LD (1990) Behavioral responses by bumble bees to variation in pollen availability. Oecologia 85: 41–47

    Article  Google Scholar 

  10. Chittka L, Gumbert A, Kunze J (1996) Foraging dynamics of bumble bees: correlates of movements within and betweeen species. Behav Ecol Sociobiol 8(3): 239–249

    Google Scholar 

  11. Waddington KD, Allen T, Heinrich B (1981) Floral preferences of bumblebees (Bombus edwardsii) in relation to intermittent versus continuous rewards. Anim Behav 29: 779–784

    Article  Google Scholar 

  12. Harder LD, Real LA (1987) Why are bumble bees risk averse. Ecology 68(4): 1104–1108

    Article  Google Scholar 

  13. Kacelnik A, Bateson M (1996) Risky-theories: the effects of variance on foraging decisions. Amer Zool 36: 402–434

    Google Scholar 

  14. Waddington (1995) Bumble bees do not respond to variance in nectar concentration. Ethology 101: 33–38

    Article  Google Scholar 

  15. Cartar RV, Dill LM (1990) Why are bumble bees risk sensitive foragers? Behav Ecol Sociobiol 26: 121–127

    Article  Google Scholar 

  16. Pyke GH (1978) Optimal foraging: movement patterns of bumble bees between inflorescences. Theor Pop Biol 13: 72–98

    Article  CAS  Google Scholar 

  17. Hodges CM (1985) Bumblebees foraging: the threshold departure rule. Ecology 66: 179–187

    Article  Google Scholar 

  18. Pleasants JM (1989) Optimal foraging by nectarivores: a test of marginal value theorem. Amer Naturalist 134: 51–71

    Article  Google Scholar 

  19. Waddington KD (1980) Flight patterns of foraging bees relative to density of artificial flowers and distribution of nectar. Oecologia 44: 199–204

    Article  Google Scholar 

  20. Real LA (1992) Information processing and the evolutionary ecology of cognitive architecture. Amer Naturalist 36: 518–529

    Google Scholar 

  21. Real LA (1996) Paradox, performance and the architecture of decision-making in animals. Amer Zool 36: 518–529

    Google Scholar 

  22. Schmid-Hempel P, Kacelnik A, Houston AI (1985) Honeybees maximize efficiency by not filling their crop. Behav Ecol Sociobiol 17: 61–66

    Article  Google Scholar 

  23. Schmid-Hempel P (1987) Efficient nectar-collecting by honeybees. I. Economic models. J Anim Ecol 56: 209–218

    Article  Google Scholar 

  24. Schmid-Hempel P, Schmid-Hempel R (1987) Efficient nectar-collecting by honeybees. II. Responses to factors determining nectar availability. J Anim Ecol 219-227

    Google Scholar 

  25. Traniello JF, Fujita MS, Bowen RV (1984) Ant foraging behavior: ambient temperature affects prey selection. Behav Ecol Sociobiol 15: 65–68

    Article  Google Scholar 

  26. Traniello JF (1987) Social and individual responses to environmental factors in ants In: J Pasteels and JL Deneubourg (eds): From individual to collective behavior in social insects. Birkhäuser, Basel, 63–80

    Google Scholar 

  27. Heinrich B (1975) Energetics of pollination. Annu Rev Ecol Syst 6: 139–170

    Article  Google Scholar 

  28. Fewell JH (1988) Energetic and time costs of foraging in harvester ants Pogono-myrmex occidentalis. Behav Ecol Sociobiol 22(6): 401–408

    Article  Google Scholar 

  29. Fewell JH, Harrison JF, Lighton JR, Breed M (1996) Foraging energetics of the ant Paraponera clavata. Oecologia 105: 419–427

    Article  Google Scholar 

  30. Davidson DW (1979) Experimental tests of the optimal diet in two social insects. Behav Ecol Sociobiol 4(1): 35–41

    Article  Google Scholar 

  31. Roces E (1990) Leaf-cutting ants cut fragment sizes in relation to distance from the nest. Anim Behav 40: 1181–1183

    Article  Google Scholar 

  32. Baroni-Urbani C, Nielsen MG (1990) Energetics and foraging behaviour of the European harvesting ant, Messor capitatus (Latreille). Do ants really optimize their harvesting? Physiol Entomol 15: 449–461

    Article  Google Scholar 

  33. Wetterer JK (1992) Source distance has no effect on load size in the leaf-cutting ant. Atta cephalotes. Psyche 98: 355–359

    Article  Google Scholar 

  34. Nunez JA (1982) Honeybee foraging strategies at a food source in relation to its distance from the hive and the rate of sugar flow. J Apicult Res 21: 139–150

    Google Scholar 

  35. Nunez JA, Giurfa M (1996) Motivation and regulation of honey bee foraging. Bee World 77 (4): 182–196

    Google Scholar 

  36. Roces F, Nunez JA (1993) Information about food quality influences brood size selection in recruited leaf cutting ants. Anim Behav 45: 135–143

    Article  Google Scholar 

  37. Seeley TD (1995) The wisdom of the hive. Harvard University Press, Cambridge, MA

    Google Scholar 

  38. Taylor F (1977) Foraging behavior of ants: experiments with two species of myrmicine ants. Behav Ecol Sociobiol 2: 147–167

    Google Scholar 

  39. Quinet Y, Pasteeis JM (1991) Spatio-temporal evolution of the trail network in Lasius fuliginosus (Hymenoptera, Formici-dae). Belg J Zool 121: 55–72

    Google Scholar 

  40. Chadab R, Rettenmeyer CW (1975) Mass recruitment by army ants. Science 188: 1124–1125

    Article  PubMed  CAS  Google Scholar 

  41. Fewell JH, Harrison JF, Stiller TM, Breed MD (1992) Distance effects on resource profitability and recruitment in the giant tropical ant Paraponera clavata Oecologia 92: 542–547

    Article  Google Scholar 

  42. Deneubourg JL, Goss S (1989) Collective patterns and decision-making. Ethol Ecol Evol 1: 295–311

    Article  Google Scholar 

  43. Beckers R, Deneubourg JL, Pasteeis JM (1990) Collective decision-making through food recruitment. Insect Soc 37(3), 258–267

    Article  Google Scholar 

  44. Hantgartner W (1970) Control of phero-mone quantity in odor trails of the ant Acanthomyops interjectus. Experientia 26: 664–665

    Article  Google Scholar 

  45. Crawford DL, Rissing SW (1983) Regulation of recruitment by individual scouts in Formica oreas Wheeler (Hymenoptera, Formicidae). Insect Soc 30(2): 177–183

    Article  Google Scholar 

  46. Beckers R, Deneubourg JL, Goss S (1993) Modulation of trail-laying in the ant Lasius niger (Hymenoptera: Formicidae) and its role in the collective selection of a food source. J Insect Behav 6 (6): 751–759

    Article  Google Scholar 

  47. Szlep R, Jacobi T (1967) The mechanism of recruitment to mass foraging in colonies of Monomoriuum venustum, M. subopacum ssp. phoenicum, Tapinoma Israelis and T. simothi v. phoenicum. Insect Soc 1: 25–40

    Article  Google Scholar 

  48. de Biseau JC, Deneubourg JL, Pasteeis JM (1991) Collective flexibility during mass recruitment in the ant Myrmica sabuleti (Hymenoptera: Formicidae). Psyche 98(4): 323–336

    Article  Google Scholar 

  49. Breed MD, Fewell JH, Moore AJ, Williams KR (1987) Graded recruitment in a ponerine ant. Behav Ecol Sociobiol 20: 407–411

    Article  Google Scholar 

  50. Wilson EO (1962) Chemical communication among workers of the fire ant Solenopsis saevissima (Fr Smith): the organization of mass foraging. Anim Behav 10: 134–147

    Article  Google Scholar 

  51. Hantgartner W (1969) Structure and variability of the individual odor trail in Solenopsis geminata (Hymenoptera; Formicidae). Z Vergl Physiol 62: 111–120

    Article  Google Scholar 

  52. Verhaeghe JC (1982) Food recruitment in Tetramorium impurum. Insect Soc 29: 67–85

    Article  Google Scholar 

  53. Traniello JFA (1983) Social organization and foraging success in Lasius neoniger (HymenopteraiFormicidae): behavioral and ecological aspects of recruitment communication. Oecologia 59: 94–100

    Article  Google Scholar 

  54. Cammaerts MC (1980) Systèmes d’approvisionnement chez Myrmica scabrinodis (Formicidae). Insect Soc 27(4): 328–242

    Article  Google Scholar 

  55. Cammaerts MC, Cammaerts R (1980) Food recruitment strategies of the ants Myrmica sabuleti and Myrmica ruginodis. Behav Process 5: 251–270

    Article  Google Scholar 

  56. de Biseau JC, Pasteeis JM (1994) Regulated food recruitment through individual behavior of scouts in the ant Myrmica sabuleti (Hymenoptera: Formicidae). J Insect Behav 7(6): 767–777

    Article  Google Scholar 

  57. Detrain C, Deneubourg JL (1997) Scavenging by Pheidole pallidula: a key for understanding decision-making systems in ants. Anim Behav 53: 537–547

    Article  Google Scholar 

  58. Detrain C, Pasteeis JM, Deneubourg JL, Goss S (1990) Prey foraging by the ant Pheidole pallidula: decision-making systems in food recruitment. In: GK Veeresh, B Mallik, CA Viraktamah (eds): Social insects and the environment. Oxford and IBH Publishing, New Delhi, 500–501

    Google Scholar 

  59. Detrain C, Pasteels JM (1991) Caste differences in behavioural thresholds as a basis for polyethism during food recruitment in the ant Pheidole pallidula (Nyl.). J Insect Behav 4(2): 157–176

    Article  Google Scholar 

  60. Detrain C, Mailleux AC, Deneubourg JL (1997) Coding of food volume in the ant Lasius niger. Ethology 32: 183

    Google Scholar 

  61. Hahn M, Maaschwitz U (1985) Foraging strategies and recruitment behaviour in the European harvester ant Messor rufitarsis. Oecologia 68: 45–51

    Article  Google Scholar 

  62. Nonacs P (1990) Death in the distance: mortality risk as information for foraging ants. Behaviour 112: 23–35

    Article  Google Scholar 

  63. Nonacs P, Dill LM (1988) Foraging response of the ant Lasius pallitarsis to food sources with associated mortality risk. Insect Soc 35: 293–303

    Article  Google Scholar 

  64. Beckers R, Deneubourg JL, Goss S (1992) Trails and U-turns in the selection of a path by the ant Lasius niger. J Theor Biol 159: 397–415

    Article  Google Scholar 

  65. Themen P, McNeil JN, Wellington WG, Febvay G (1987) Ecological studies of the leaf-cutting ant, Acromyrmex octospinosus in Guadeloupe. In: CS Logren, FRK Vander Meer (eds): Fire ants and 1eaf-cutting ants: biology and management. 172–183

    Google Scholar 

  66. Natan C (1997) Rôle de l’exploration et du substrat dans l’organisation du réseau de pistes chez Lasius niger. Mémoire de licence-Université Libre de Bruxelles

    Google Scholar 

  67. Traniello JFA (1987) Chemical trail systems, orientation, and territorial interactions in the ant Lasius neoniger. J Insect Behav 2: 339–354

    Article  Google Scholar 

  68. Hölldobler B (1974) Home range orientation and territoriality in harvesting ants. Proc Natl Acad Sci USA 71: 3274–3277

    Article  PubMed  Google Scholar 

  69. Detrain C, Pasteels JM (1992) Caste polyethism and collective defense in the ant Pheidole pallidula: the outcome of quantitative differences in recruitment. Behav Ecol Sociobiol 29: 405–412

    Article  Google Scholar 

  70. Passera L, Roncin E, Kaufmann B, Keller L (1996) Increased soldier production in ant colonies exposed to intraspecific competition. Nature 379: 630–631

    Article  CAS  Google Scholar 

  71. Nonacs P, Dill LM (1990) Mortality risk versus food quality tradeoffs in a common currency: ant patch preferences. Ecology 71(5): 1886–1892

    Article  Google Scholar 

  72. Nonacs P, Dill LM (1991) Mortality risk versus food quality trade-offs in ants: patch use over time. Ecol Entomol 16: 73–80

    Article  Google Scholar 

  73. Deneubourg JL, Goss S, Franks N, Pasteels JM (1989) The blind leading the blind: modeling chemically mediated army ant raid patterns. J Insect Behav 2: 719–725

    Article  Google Scholar 

  74. Goss S, Deneubourg JL (1989) The self-organizing clock pattern of Messor pergandei. Insect Soc 36(4): 339–346

    Article  Google Scholar 

  75. Camazine S, Sneyd J (1991) A mathematical model of colony level nectar source selection by honey bees: self-organization through simple rules. J Theor Biol 149: 547–571

    Article  Google Scholar 

  76. Judd TM, Sherman PW (1996) Naked mole-rats recruit colony mates to food sources. Anim Behav 52: 957–969

    Article  Google Scholar 

  77. Galef B, Buckley L (1996) Use of foraging trails by Norway rats. Anim Behav 51: 765–771

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Detrain, C., Deneubourg, JL., Pasteels, J.M. (1999). Decision-making in foraging by social insects. In: Detrain, C., Deneubourg, J.L., Pasteels, J.M. (eds) Information Processing in Social Insects. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8739-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8739-7_18

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9751-8

  • Online ISBN: 978-3-0348-8739-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics