Skip to main content

Micromorphic Continuum and Fractal Fracturing in the Lithosphere

  • Chapter
Fractals and Dynamic Systems in Geoscience

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 315 Accesses

Abstract

It seems that internal structures and discontinuities in the lithosphere essentially influence the lithospheric deformation such as faulting or earthquakes. The micromorphic continuum provides a good framework to study the continuum with microstructure, such as earthquake structures. Here we briefly introduce the relation between the theory of micromorphic continuum and the rotational effects related to the internal microstructure in epicenter zones. Thereafter the equilibrium equation, in terms of the displacements (the Navier equation) in the medium with microstructure, is derived from the theory of the micromorphic continuum. This equation is the generalization of the Laplace equation in terms of displacements and can lead to Laplace equations such as the local diffusion-like conservation equations for strains. These local balance/stationary state of strains under the steady non-equilibrium strain flux through the plate boundaries bear the scale-invariant properties of fracturing in the lithospheric plate with microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki, K. A., Probabilistic synthesis of precursory phenomena. In Earthquake Prediction: An International Review (Maurice Ewing Series 4) (eds. Simpson, D. W., and Richards, P. G.) (Am. Geophys. Union, Washington D.C. 1981) pp. 566–574.

    Chapter  Google Scholar 

  • Bak, P., Tang, C., and Wiesenfeld, K. (1987), Self-organized Criticality: An Explanation of 1/f Noise, Phys. Rev. Lett. 59, 381–384.

    Article  MathSciNet  ADS  Google Scholar 

  • Bak, P., Tang, C., and Wiesenfeld, K. (1988), Self-organized Criticality, Phys. Rev. A 38, 367–374.

    Article  MathSciNet  ADS  Google Scholar 

  • Bielski, W., Anisotropy in a micromorphic continuum. In Theory of Earthquake Premonitory and Fracture Processes (ed. Teisseyre, R.) (Polish Scientific Publ., Warszawa 1995) pp. 633–639.

    Google Scholar 

  • Chelidze, T. (1993), Fractal Damage Mechanics of Geomaterials, Terra Nova 5, 421–437.

    Article  Google Scholar 

  • Cobbold, P. R. (1977), Compatibility Equations and the Integration of Finite Strains in Two Dimensions, Tectonophys. 39, Tl—T6.

    Article  ADS  Google Scholar 

  • Droste, Z., and Teisseyre, R. (1976), Rotational and Displacement Components of Ground Motion as Deduced from Data of the Azimuth System of Seismograph, Pubis. Inst. Geophys. Pol. Acad. Sci. 97, 157–167 [in Polish with English abstract].

    Google Scholar 

  • Dubolis, J., and Novaili, L. (1989), Quantification of the Fracturing of the Slab Using a Fractal Approach, Earth Planet. Sci. Lett. 94, 97–108.

    Article  ADS  Google Scholar 

  • Elsasser, W. M., Convection and stress propagation in the upper mantle. In The Application of Modern Physics to the Earth and Planetary Interiors (ed. Runcorn, S. K.) (Wiley Interscience, New York 1969) pp. 223–246.

    Google Scholar 

  • England, A. H., Complex Variable Methods in Elasticity (Wiley-Interscience, New York 1971).

    MATH  Google Scholar 

  • Enya, O. (1901), On Aftershocks, Rep. Earthq. Invest. Comm. 35, 35–56 [In Japanese].

    Google Scholar 

  • Eringen, A. C., Theory of micropolar elasticity. In Fracture, vol. 2 (ed. Liebowitz, H.) (Academic Press, New York 1968) pp. 621–729.

    Google Scholar 

  • Eringen, A. C., and Suhubi, E. S. (1964), Nonlinear Theory of Micro-elastic Solids. I,Int. J. Eng. Sci. 2, 189–203.

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen, A. C., and Claus, Jr., W. D., A micromorphic approach to dislocation theory and its relation to several existing theories. In Fundamental Aspects of Dislocation Theory (eds. Simmons, J. A., deWit, R., and Bullough, R.) (Nat. Bur. Stand. (U.S.) Spec. Publ. 317, II 1970) pp. 1023–1040.

    Google Scholar 

  • Feller, W., An Introduction to Probability Theory and its Applications, vol. 2 (Wiley, New York 1966).

    Google Scholar 

  • Fernandez, L., Guinea, F., and Louis, E. (1988), Random and Dendritic Patterns in Crack Propaga-tion, J. Phys. A: Math. Gen. 21, L301—L305.

    Article  Google Scholar 

  • Gudenberg, B., and Richiter, C. F., Seismicity of the Earth and Associated Phenomena, 2nd ed. (Princeton Univ. Press, Princeton 1954).

    Google Scholar 

  • Hanyga, A., and Teisseyre, R. (1973), The Fundamental Source Solutions in the Symmetric Micromorphic Continuum, Rivista Ital. Di Geofis. 22, 336–340.

    Google Scholar 

  • Hanyga, A., and Teisseyre, R. (1974), Point Source Models in the Micromorphic Continuum, Acta Geophys. Polon. 22, 11–20.

    Google Scholar 

  • Hanyga, A., and Teisseyre, R. (1975), Linear Symmetric Micromorphic Thermoelasticity-source Solution and Wave Propagation, Acta Geophys. Polon. 23, 147–157.

    Google Scholar 

  • Hwa, T., and Kardar, M. (1989), Dissipative Transport in Open System: An Investigation of Self-organized Criticality, Phys. Rev. Lett. 62, 1813–1816.

    Article  ADS  Google Scholar 

  • Iesan, D. (1981), Some Applications of Micropolar Mechanics to Earthquake Problems, Int. J. Eng. Sci. 19, 855–864.

    Article  MATH  Google Scholar 

  • Inaoka, H., and Takayasu, H. (1996), Universal Fragment Size Distribution in a Numerical Model of Impact Fracture, Physica A 229, 5–25.

    Article  ADS  Google Scholar 

  • Ito, K. (1992), Towards a New View of Earthquake Phenomena, Pure app]. geophys. 138, 531–548.

    Article  ADS  Google Scholar 

  • Ito, K., and Matsuzaki, M. (1990), Earthquake as Self-organized Critical Phenomena, J. Geophys. Res., B5 95, 6853–6860.

    Article  ADS  Google Scholar 

  • Kanamori, H., and Anderson, D. L. (1975), Theoretical Basis of Some Empirical Relations in Seismology, Bull. Seismol. Soc. Am. 65, 1073–1095.

    Google Scholar 

  • King, G. (1983), The Accommodation of Large Strains in the Upper Lithosphere of the Earth and the Other Solids by Self-similar Fault Systems: The Geometric Origin of b-value, Pure app]. geophys. 121, 761–815.

    Article  ADS  Google Scholar 

  • Knopoff, L. (1958), Energy Release in Earthquakes, Geophys. J. 1, 44–52.

    Article  MATH  Google Scholar 

  • Lanczos, C., The Variation Principles of Mechanics (Univ. Toronto Press, Toronto 1949).

    Google Scholar 

  • Landau, L. D., and Lifshitz, E. M., Theory of Elasticity (Pergamon Press, Oxford 1959a).

    Google Scholar 

  • Landau, L. D., and Lifshitz, E. M., Fluid Mechanics (Pergamon Press, Oxford 1959b).

    Google Scholar 

  • Lehner, F. K., Li, V. C., and Rice, J. R. (1981), Stress Diffusion along Rupturing Plate Boundaries, J. Geophys. Res. 86, 6155–6169.

    Article  ADS  Google Scholar 

  • Li, V. C., and Rice, J. R. (1983), Preseismic Rupture Progression and Great Earthquake Instabilities at Plate Boundaries, J. Geophys. Res. 88, 4231–4246.

    Article  ADS  Google Scholar 

  • Louis, E., Guinea, F., and Flores, F., The fractal nature of fracture. In Fractals in Physics (eds. Pietronero, L., and Tosatti, E.) (Elsevier Sci. Pub., Amsterdam 1986) pp. 177–180.

    Google Scholar 

  • Lours, E., and Guinea, F. (1987), The Fractal Nature of Fracture, Europhys. Lett. 3, 871–877.

    Article  ADS  Google Scholar 

  • Louis, E., and Guinea, F. (1989), Fracture as a Growth Process, Physica D 38, 235–241.

    Article  ADS  Google Scholar 

  • Main, I. G. (1991), A Modified Griffith Criterion for the Evolution of Damage with a Fractal Distribution of Crack Lengths: Application to Seismic Event Rates and b-values, Geophys. J. Int. 107, 353–362.

    Article  ADS  Google Scholar 

  • Main, I. G., Meredith, P. G., and Jones, C. (1989), A Reinterpretation of the Precursory Seismic b-value Anomaly from Fracture Mechanics, Geophys. J. 96, 131–138.

    Article  Google Scholar 

  • Main, I. G., Peacock, S., and Meredith, P. G. (1990), Scattering Attenuation and the Fractal Geometry of Fracture Systems, Pure appl. geophys. 133, 283–304.

    Article  ADS  Google Scholar 

  • Mandelbrot, B. B., The Fractal Geometry of Nature (Freeman, New York 1982).

    MATH  Google Scholar 

  • Meakin, P. (1991), Models for Material Failure and Deformation, Science 252, 226–233.

    Article  ADS  Google Scholar 

  • Meredith, P. G., and Atokinson, B. K. (1983), Stress Corrosion and Acoustic Emission during Tensile Crack Propagation in Whin Sill Dolerite and Other Basic Rocks, Geophys. J. R. astr. Soc. 75, 1–21.

    Article  Google Scholar 

  • Meredith, P. G., Main, I. G., and Jones, C. (1990), Temporal Variations in Seismicity during Quasi-static and Dynamic Rock Failure, Tectonophys. 175, 249–268.

    Article  Google Scholar 

  • Mogi, K. (1962), The Influence of the Dimensions of Specimens on the Fracture Strength of Rocks: Comparison between the Strength of Rock Specimens and that of the Earth’s Crust, Bull. Earthq. Res. Inst. 40, 175–185.

    Google Scholar 

  • Nagahama, H. (1991), Fracturing in the Solid Earth, Sci. Repts. Tohoku Univ., 2nd ser. (Geol.) 61, 103–126.

    Google Scholar 

  • Nagahama, H. (1994), Self-affine Growth Pattern of Earthquake Rupture Zones, Pure appl. geophys. 142, 263–271.

    Article  ADS  Google Scholar 

  • Nagahama, H. (1996), Non-Riemannian and Fractal Geometries of Fracturing in Geomaterials, Geol. Rund. 85, 96–102.

    Article  Google Scholar 

  • Nagahama, H. (1998), Fractal Structural Geology, Mem. Geol. Soc. Japan 50, 13–19.

    Google Scholar 

  • Nagahama, H., and Teisseyre, R. (1999), Micromorphic Continuum, Rotational Wave and Fractal Properties of Earthquakes and Faults, Acta Geophys. Polon. 46, 277–294.

    Google Scholar 

  • Nagahama, H., and Yosxn, K. (1993), Fractal Dimension and Fracture of Brittle Rocks, Int. J. Rock. Mech. Min. Sci. and Geomech. Abstr. 30, 173–175.

    Article  Google Scholar 

  • Nagahama, H., and Yoshii, K., Scaling laws of fragmentation. In Fractal and Dynamical Systems in Geosciences (ed. Kruhl, J. H.) (Springer-Verlag, Berlin 1994) pp. 25–36.

    Google Scholar 

  • Rice, J. R., The mechanics of earthquake rupture. In Physics of the Earth’s Interior (eds. Dziewonski, M. and Boschi, E.) (Italian Physical Society/North Holland, Amsterdam 1980) pp. 555–649.

    Google Scholar 

  • Shimbo, M. (1978), A Geometrical Formation of Granular Media, Theor. Appl. Mech. 26, 473–480.

    Google Scholar 

  • Sornette, D., and Sornette, A. (1994), Comment on “On scaling relations for large earthquakes” by B. Romanowicz and J. B. Rundel, from the Perspective of a Recent Nonlinear Diffusion Equation Linking Short-time Deformation to Long-time Tectonics, Bull. Seismol. Soc. Am. 84, 1679–1683.

    Google Scholar 

  • Sornette, D., and Vireux, J. (1992), Linking Short-timescale Deformation to Long-timescale Tectonics, Nature 357, 401–404.

    Article  ADS  Google Scholar 

  • Sornette, D., and Vanneste, C. (1996), Fault Self-organized by Repeated Earthquakes in a Quasi-static Antiplane, Nonlinear Proc. Geophys. 3, 1–12.

    Article  ADS  Google Scholar 

  • Sornette, D., Davy, P., and Sornette, A. (1990), Structuration of the Lithosphere in Plate Tectonics as a Self organized Critical Phenomenon, J. Geophys. Res. 95 (B11), 17353–17361.

    Article  ADS  Google Scholar 

  • Sornette, A., Davy, P., and Sornette, D. (1990), Growth of Fractal Fault Patterns, Phys. Rev. Lett. 65, 2266–2269.

    Article  ADS  Google Scholar 

  • Stakhovsky, I. R. (1995), Fractal Geometry of Brittle Failure at Antiplanar Shear, Phys. Solid Earth 31, 268–275.

    Google Scholar 

  • Stanley, H., and Ostrovsky, N., On Growth and Form (Nijhoff Publ., Amsterdam 1986).

    MATH  Google Scholar 

  • Suhubi, E. S., and Eringen, A. C. (1964), Nonlinear Theory of Micro-elastic Solids. II, Int. J. Eng. Sci. 2, 389–404.

    Article  MathSciNet  Google Scholar 

  • Taguchi, Y. (1989), Fracture Propagation Governed by the Laplace Equation, Phys. A 156, 741–755.

    Article  Google Scholar 

  • Takayasu, H. (1985), A Deterministic Model of Fracture, Prog. Theor. Phys. 74, 1343–1345.

    Article  ADS  Google Scholar 

  • Takayasu, H., Pattern formation of dendritic fractals in fracture and electric breakdown. In Fractals in Physics (eds. Pietronero, L., and Tosatti, E.) (Elsevier Sci. Publ. Amsterdam 1986) pp. 181–184.

    Google Scholar 

  • Takeo, M., and Ito, H. M. (1997), What Can Be Learned from Rotational Motions Excited by Earthquakes?, Geophys. J. Int. 129, 319–329.

    Article  ADS  Google Scholar 

  • Teisseyre, R. (1973a), Earthquake Processes in a Micromorphic Continuum, Pure appl. geophys. 102, 15–28.

    Article  ADS  Google Scholar 

  • Teisseyre, R. (1973b), Earthquake Processes in a Micromorphic Continuum, Rev. Roum. GĂ©ol. GĂ©ogr. SĂ©r. de GĂ©ophys. 17, 145–148.

    Google Scholar 

  • Teisseyre, R., Symmetric micromorphic continuum: wave propagation,point source solution and some applications to earthquake processes. In Continuum Mechanics Aspects of Geodynamics and Rock Fracture Mechanics (ed. Thoft-Christensen) (D. Riedel Publ., Holland 1974) pp. 201–244.

    Chapter  Google Scholar 

  • Teisseyre, R. (1975), On the Recent Development of Continuum Mechanics and its Application to Seismology, Gerlands Beitr. Geophysik, Leipzig 84, 501–508.

    Google Scholar 

  • Teisseyre, R. (1978), Relation Between the Defect Distribution and Stress. The Glacier Motion, Acta Geophys. Polon. 26, 283–290.

    Google Scholar 

  • Teisseyre, R. (1982), Some Seismic Phenomena in the Light of the Symmetric Micromorphic Theory, J. Tech. Phys. 38, 95–99.

    Google Scholar 

  • Teisseyre, R., Some problems of the continuum media and the applications to earthquake studies. In Continuum Theories in Solid Earth Physics (ed. Teisseyre, R.) (Polish Scientific Publ., Warszawa-Elsevier, Amsterdam 1986) pp. 256–309.

    Google Scholar 

  • Teisseyre, R., Micromorphic model of a seismic source zone, 1. Introduction. In Theory of Earthquake Premonitory and Fracture Processes (ed. Teisseyre, R.) (Polish Scientific Publ., Warszawa 1995a) pp. 613–615.

    Google Scholar 

  • Teisseyre, R., Micromorphic model of a seismic source zone, 2. Symmetric micromorphic theory; applications to seismology. In Theory of Earthquake Premonitory and Fracture Processes (ed. Teisseyre, R.) (Polish Scientific Publ., Warszawa 1995b) pp. 616–627.

    Google Scholar 

  • Teisseyre, R., and Nagahama, H. (1999), Micro-inertia Continuum: Rotations and Semi-waves, Acta Geophys. Polon. 47, 259–272.

    Google Scholar 

  • Turcotte, D. L. (1986a), Fractals and Fragmentation, J. Geophys. Res. 91, 1921–1926.

    Article  ADS  Google Scholar 

  • Turcotte, D. L. (1986b), A Fractal Model for Crustal Deformation, Tectonophys. 132, 261–269.

    Article  Google Scholar 

  • Turcotte, D. L. (1986c), Fractals in Geology and Geophysics, Pure appl. geophys. 131, 171–196.

    Article  ADS  Google Scholar 

  • Turcotte, D. L., Fractals and Chaos in Geology and Geophysics (Cambridge Univ. Press, Cambridge 1992).

    Google Scholar 

  • Walgraef, D. (1988), Instabilities and Patterns in Reaction-diffusion Dynamics, Solid State Phenom. 384, 77–96.

    Article  Google Scholar 

  • Wenousky, S. G., Scholz, C. H., Shimazaki, K., and Matsuda, T. (1983), Earthquake Frequency Distribution and the Mechanics of Faulting, J. Geophys. Res. 88, 9331–9340.

    Article  ADS  Google Scholar 

  • Zhang, Yi-C. (1989), Scaling Theory of Self-organized Criticality, Phys. Rev. Lett. 63, 470–473.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Nagahama, H., Teisseyre, R. (2000). Micromorphic Continuum and Fractal Fracturing in the Lithosphere. In: Blenkinsop, T.G., Kruhl, J.H., Kupková, M. (eds) Fractals and Dynamic Systems in Geoscience. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8430-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8430-3_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6309-3

  • Online ISBN: 978-3-0348-8430-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics