Skip to main content
Log in

Scattering attenuation and the fractal geometry of fracture systems

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Scattering of seismic waves can be shown to have a frequency dependenceQ −1 ∝ ω3−v if scattering is produced by arrays of inhomogeneities with a 3D power spectrumW 3D(k) ∝k −v. In the earth's crust and upper mantle the total attenuation is often dominated by scattering rather than intrinsic absorption, and is found to be frequency dependent according toQ −1 ∝ ωγ, where −1<γ≤−0.5. IfD 1 is the fractal dimension of the surface of the 3D inhomogeneities measured on a 2D section, then this corresponds respectively to 1.5<D 1≤1.75, since it can be shown that γ=2(D 1−2). Laboratory results show that such a distribution of inhomogeneities, if due to microcracking, can be produced only at low stress intensities and slow crack velocities controlled by stress corrosion reactions. Thus it is likely that the earth's brittle crust is pervaded by tensile microcracks, at least partially filled by a chemically active fluid, and preferentially aligned parallel to the maximum principal compressive stress. The possibility of stress corrosion implies that microcracks may grow under conditions which are very sensitive to pre-existing heterogeneities in material constants, and hence it may be difficult in practice to separate the relative contribution of crack-induced heterogeneity from more permanent geological heterogeneities.

By constrast, shear faults formed by dynamic rupture at critical stress intensities produceD 1=1, consistent with a dynamic rupture criterion for a power law distribution of fault lengths with negative exponentD. The results presented here suggest empirically thatD 1∼-1/2(D+1), thereby providing the basis for a possible framework to unify the interpretation of temporal variations in seismicb-value (b∼-D/2) and the frequency dependence of scattering attenuation (γ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki, K. (1981),A probabilistic synthesis of precursory phenomena, InEarthquake Prediction—An International Review, Am. Geophys. Union, Maurice Ewing Ser 4, 566–574.

    Google Scholar 

  • Allègre, C. J., Le Mouel, J. L., andProvost, A. (1982),Scaling Rules in Rock Fracture and Possible Implications for Earthquake Prediction, Nature297, 47–49.

    Google Scholar 

  • Atkinson, B. K. (1984),Subcritical Crack Growth in Geological Materials, J. Geophys. Res.89, 4077–4114.

    Google Scholar 

  • Atkinson, B. K. (ed.),Fracture Mechanics of Rock (Academic Press, London 1987).

    Google Scholar 

  • Atkinson, B. K., andMeredith, P. G.,The theory of subcritical crack growth with applications to minerals and rocks, InFracture Mechanics of Rock (ed.Atkinson,B. K.) (Academic Press, London 1987) pp. 111–166.

    Google Scholar 

  • Aviles, C. A., Scholz, C. H., andBoatwright, J. (1987),Fractal Analysis Applied to Characteristic Segments of the San Andreas Fault, J. Geophys. Res.92, 331–344.

    Google Scholar 

  • Brown, S. R., andScholz, C. H. (1985),Broad Bandwidth Study of the Topography of Natural Rock Surfaces, J. Geophys. Res.90, 12575–12582.

    Google Scholar 

  • Caputo, M. (1976),Model and Observed Seismicity Represented in a Two-dimensional Space, Ann. Geophys. (Rome)4, 277–288.

    Google Scholar 

  • Crampin, S. (1978),Seismic Wave Propagation through a Cracked Solid: Polarisation as a Possible Dilatancy Diagnostic, Geophys. J. R. Astr. Soc.53, 467–496.

    Google Scholar 

  • Crampin, S. (1981),A Review of Wave Motion in Anisotropic and Cracked Elastic Media, Wave Motion3, 343–391.

    Google Scholar 

  • Crampin, S. (1984),Effective Anisotropic Elastic Constants for Wave Propagation through Cracked Solids, Geophys. J. R. Astr. Soc.76, 135–145.

    Google Scholar 

  • Crampin, S., Evans, R., andAtkinson, B. K. (1984),Earthquake Prediction: A New Physical Basis, Geophys. J. R. Astr. Soc.76, 147–156.

    Google Scholar 

  • Crampin, S., andBooth, D. C. (1985),Shear-wave Polarisations Near the North Anatolian Fault—II: Interpretation in Terms of Crack-induced Anisotropy, Geophys. J. R. Astr. Soc.83, 75–92.

    Google Scholar 

  • Das, S., andScholz, C. H. (1981),Theory of Time-dependent Rupture in the Earth, J. Geophys. Res.86, 6039–6051.

    Google Scholar 

  • Etheridge, M. A. (1983),Differential Stress Magnitudes During Regional Deformation and Metamorphism: Upper Bound Imposed by Tensile Fracturing, Geology11, 231–234.

    Google Scholar 

  • Hadley, K. (1976),Comparison of Calculated and Observed Crack Densities and Seismic Velocities in Westerly Granite, J. Geophys. Res.81, 3484–3494.

    Google Scholar 

  • Howard, K. A., Aaron, J. M., Brabb, E. E., andBrock, M. R. (1978),Preliminary Map of Young Faults in the United States as a Guide to Possible Fault Activity. USGS field studies Map MF-916.

  • Huang, J., andTurcotte, D. L. (1988),Fractal Distributions of Stress and Strength and Variations of b-Value, Earth Planet. Sci. Lett.91, 223–230.

    Google Scholar 

  • Hudson, J. A. (1981),Wave Speeds and Attenuation of Elastic Waves in Material Containing Cracks, Geophys. J. R. Astr. Soc.64, 133–150.

    Google Scholar 

  • Hudson, J. A. (1986),A Higher Order Approximation to the Wave Propagation Constants for a Cracked Solid, Geophys. J. R. Astr. Soc.87, 265–274.

    Google Scholar 

  • Jin, A., Cao, T., andAki, K. (1985),Regional Change of Coda Q in the Oceanic Lithosphere. J. Geophys. Res.90, 8651–8659.

    Google Scholar 

  • Jin, A., andAki, K. (1986),Temporal Change in Coda Q Before the Tangshan Earthquake of 1976 and the Haicheng Earthquake of 1975, J. Geophys. Res.91, 665–673.

    Google Scholar 

  • Johnston, A. C.,On the use of the frequency-magnitude relation in earthquake risk assessment, InProc. Conference on Earthquakes and Earthquake Engineering, the Eastern U.S. (ed.Beavers, J.) (Ann Arbor Science Ltd., Butterworth Group 1981) Vol. I, pp. 161–181.

  • Kanamori, H., andAnderson, D. L. (1975),Theoretical Bases of Some Empirical Relations in Seismology, Bull. Seismol. Soc. Am.65, 1073–1095.

    Google Scholar 

  • Kerrich, R., La Tour, T. E., andBarnett, R. L. (1981),Mineral Reactions Participating in Intragranular Fracture Propagation: Implications for Stress Corrosion Cracking, J. Structural Geology3, 77–87.

    Google Scholar 

  • King, G. (1983),The Accommodation of Large Strains in the Upper Lithosphere of the Earth and Other Solids by Self-similar Fault Systems: The Geometric Origin of b-value, Pure Appl. Geophys.121, 761–815.

    Google Scholar 

  • King, G., andNábělek, J. (1985),Role of Fault Bends in the Initiation and Termination of Earthquake Rupture, Science228, 984–987.

    Google Scholar 

  • Lawn, B. R., andWilshaw, T. R.,Fracture of Brittle Solids (Cambridge University Press, Cambridge 1975) 204pp.

    Google Scholar 

  • Lerche, I. (1985),Multiple Scattering of Seismic Waves in Fractured Media: Cross-correlation as a Probe of Fracture Intensity, Pure Appl. Geophys.123, 503–542.

    Google Scholar 

  • Lerche, I., andPetroy, D. (1986),Multiple Scattering of Seismic Waves in Fractured Media: Velocity and Effective Attenuation of the Coherent Components of P Waves and S Waves, Pure Appl. Geophys.124, 975–1019.

    Google Scholar 

  • Main, I. G., andBurton, P. W. (1984a),Information Theory and the Earthquake Frequency-magnitude Distribution, Bull. Seismol. Soc. Am.74, 1409–1426.

    Google Scholar 

  • Main, I. G., andBurton, P. W. (1984b),Physical Links Between Crustal Deformation, Seismic Moment and Seismic Hazard for Regions of Varying Seismicity, Geophys. J. R. Astr. Soc.79, 469–488.

    Google Scholar 

  • Main, I. G. (1988),Prediction of Failure Times in the Earth for a Time-varying Stress, Geophys. J.92, 455–464.

    Google Scholar 

  • Main, I. G., andMeredith, P. G. (1989),Classification of Earthquake Precursors from a Fracture Mechanics Model, Tectonophysics167, 273–283.

    Google Scholar 

  • Main, I. G., Meredith, P. G., andJones, C. (1989),A Reinterpretation of the Precursory Seismic b-value Anomaly from Fracture Mechanics, Geophys. J.96, 131–138.

    Google Scholar 

  • Mandelbrot, B. B.,Fractals, Form, Chance and Dimension (W. M. Freeman, San Francisco 1977).

    Google Scholar 

  • Mandelbrot, B. B.,The Fractal Geometry of Nature (W. H. Freeman, San Francisco 1982).

    Google Scholar 

  • Meredith, P. G., andAtkinson, B. K. (1983),Stress Corrosion and Acoustic Emission During Tensile Crack Propagation in Whin Still Dolerite and Other Basic Rocks, Geophys. J. R. Astr. Soc.75, 1–21.

    Google Scholar 

  • Meredith, P. G., Main, I. G., andJones, C. (1989),Temporal Variations in Seismicity During Quasi-static and Dynamic Rock Failure, Tectonophysics, in press.

  • Peacock, S., Crampin, S., Booth, D. C., andFletcher, J. B. (1988),Shear-wave Splitting in the Anza Seismic Gap, Southern California: Temporal Variations as Possible Precursors, J. Geophys. Res.93, 3339–3356.

    Google Scholar 

  • Reiter, E., Dainty, A. M., andToksöz, M. N. (1987),Nearfield attenuation in the northeastern United States and eastern Canada, InInternational Union of Geodesy and Geophysics, XIX General Assembly Abstracts, Vol. 1, p. 303.

  • Sato, H. (1982),Attenuation of S Waves in the Lithosphere Due to Scattering by its Random Velocity Structure, J. Geophys. Res.87, 7779–7785.

    Google Scholar 

  • Scholz, C. H., Sykes, L. R., andAggarwal, Y. P. (1973),Earthquake Prediction: A Physical Basis, Science181, 803–810.

    Google Scholar 

  • Segall, P., andPollard, D. D. (1983),Joint Formation in Granite Rock of the Sierra Nevada, Geol. Soc. Am. Bull.94, 563–575.

    Google Scholar 

  • Shaw, H. R., andGartner, A. E. (1986),On the Graphical Interpretation of Palaeoseismic Data, U.S.G.S. Open File Report, 86-394.

  • Sibson, R. H. (1977),Fault Rocks and Fault Mechanisms, J. Geol. Soc. London133, 191–213.

    Google Scholar 

  • Sibson, R. H. (1981),Fluid flow accompanying faulting: Field evidence and models, InEarthquake Prediction: An International Review (eds.Simpson, D. W., andRichards, P. G.) Maurice Ewing Series 4, Am. Geophys. Union, 593–603.

  • Sibson, R. H. (1985),Stopping of Earthquake Ruptures at Dilatational Fault Jogs, Nature316, 248–251.

    Google Scholar 

  • Smith, W. D. (1986),Evidence for Precursory Changes in the Frequency-magnitude b-Value, Geophys. J. R. Astr. Soc.86, 815–838.

    Google Scholar 

  • Tartarskii, V. I. (1971),The Effect of the Turbulent Atmosphere on Wave Propagation, Israel Progr. Sci., Translation, Jerusalem.

  • Tchalenko, J. S. (1970),Similarities Between Shear Zones of Different Magnitudes, Geol. Soc. Am. Bull.81, 1625–1640.

    Google Scholar 

  • Turcotte, D. L. (1986),Fractals and Fragmentation, J. Geophys. Res.91, 1921–1926.

    Google Scholar 

  • Wu, R. (1982),Attenuation of Short Period Seismic Waves Due to Scattering, Geophys. Res. Lett.9, 9–12.

    Google Scholar 

  • Wu, R. (1986),Heterogeneous Spectrum, Wave Scattering Response of A Fractal Random Medium and the Rupture Process in the Medium, J. Wave-Material Interaction1, 79–97.

    Google Scholar 

  • Wu, R., andAki, K. (1985),The Fractal Nature of the Inhomogeneities in the Lithosphere Evidenced from Seismic Wave Scattering, Pure Appl. Geophys.123, 805–818.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This is PRIS contribution 046.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Main, I.G., Peacock, S. & Meredith, P.G. Scattering attenuation and the fractal geometry of fracture systems. PAGEOPH 133, 283–304 (1990). https://doi.org/10.1007/BF00877164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877164

Key words

Navigation