Skip to main content
Log in

Towards a new view of earthquake phenomena

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Recent advances in the theory of fracture and fragmentation are reviewed. Empirical laws in seismology are interpreted from a fractal perspective, and earthquakes are viewed as a self-organized critical phenomenon (SOC). Earthquakes occur as an energy dissipation process in the earth's crust to which the tectonic energy is continuously input. The crust self-organizes into the critical state and the temporal and spatial fractal structure emerges naturally. Power-law relations known in seismology are the expression of the critical state of the crust. An SOC model for earthquakes, which explains the Gutenberg-Richter relation, the Omori's formula of aftershocks and the fractal distribution of hypocenters, is presented. A new view of earthquake phenomena shares a common standpoint with other disciplines to study natural complex phenomena with a unified theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki, K. (1979),Characterization of Barriers on an Earthquake Fault, J. Geophys. Res.84, 6140–6148.

    Google Scholar 

  • Aki, K.,A probabilistic synthesis of precursory phenomena. InEarthquake Prediction: An International Review, M. Ewing Ser., vol. 4 (eds. Simpson, D. W., and Richards, P. G.) (AGU, Washington, D. C. 1981) pp. 566–574.

    Google Scholar 

  • Allegre, C. J., Le Mouel, andProvost, A. (1982),Scaling Rules in Rock Fracture and Possible Implications for Earthquake Prediction, Nature297, 47–49.

    Google Scholar 

  • Atmanspacher, H., Schneingraber, H., andWiedenmann, G. (1989),Determination of f(α) for a Limited Random Point Set, Phys. Rev.A40, 3954–3963.

    Google Scholar 

  • Bak, P., andTang, C. (1989),Earthquakes as a Self-organized Critical Phenomenon, J. Geophys. Res.94, 15,635–15,637.

    Google Scholar 

  • Bak, P., Tang, C., andWiesenfeld, K. (1987),Self-organized Criticality: An Explanation of 1/f Noise, Phys. Rev. Lett.59, 381–384.

    Google Scholar 

  • Bak, P., Tang, C., andWiesenfeld, K. (1988),Self-organized Criticality, Phys. Rev.A38, 364–371.

    Google Scholar 

  • Bak, P., Chen, K., andCreutz, M. (1989),Self-organized Criticality in the ‘Game of Life’, Nature342, 780–782.

    Google Scholar 

  • Bebbington, M., Vere-Jones, D., andZheng, X. (1990),Percolation Theory: A Model for Rock Fracture? Geophys. J. Int.100, 215–220.

    Google Scholar 

  • Burridge, R., andKnopoff, L. (1967),Model and Theoretical Seismicity, Bull. Seismol. Soc. Am.57, 341–371.

    Google Scholar 

  • Carlson, J. M., andLanger, J. S. (1989),Properties of Earthquakes Generated by Fault Dynamics, Phys. Rev. Lett.62, 2632–2635.

    Google Scholar 

  • Chen, K., Bak, P., andObukhov, S. P. (1991),Self-organized Criticality in Crack-progagation Model of Earthquakes, Phys. Rev.A43, 625–630.

    Google Scholar 

  • Dhar, D., andRamaswamy, R. (1989),Exactly Solved Model of Self-organized Critical Phenomena, Phys. Rev. Lett.63, 1659–1662.

    Google Scholar 

  • Durrett, R. (1988),Crabgrass, Measles, and Gypsy Moths: An Introduction to Interacting Particle Systems, Mathemat. Intelligence10, 37–47.

    Google Scholar 

  • Enya, O. (1901),On Aftershocks, Rep. Earthq. Inv. Comm.35, 35–56 (in Japanese).

    Google Scholar 

  • Gardner, M. (1970),Mathematical Games Sci. Am.223 (10), 120–123.

    Google Scholar 

  • Geilikman, M. B., Golubeva, T. V., andPisarenko, V. F. (1990),Multifractal Patterns of Seismicity, Earth Planet. Sci. Lett.99, 127–132.

    Google Scholar 

  • Glansdorff, P., andPrigogine, I.,Theory of Structure Stability and Fluctuations (Wiley and Sons, London 1971).

    Google Scholar 

  • Griffith, A. A. (1921),The Phenomena of Rupture and Flow in Solids, Phil. Trans. R. Soc.A221, 163–198.

    Google Scholar 

  • Griffith, A. A. (1924),The Theory of Rupture, Proc. Ist Intern. Cong. Appl. Mech., Delft, pp. 55–63.

  • Haken, H.,Synergetics: Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry and Biology (Springer, Berlin 1977).

    Google Scholar 

  • Haken, H.,Advanced Synergetics (Springer, Berlin 1983).

    Google Scholar 

  • Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., andShraiman, B. I. (1986),Fractal Measures and their Singularities: The Characterization of Strange sets, Phys. Rev.A33, 1141–1151.

    Google Scholar 

  • Haskell, N. A. (1969),Elastic Displacements in the Near Field of a Propagating Fault, Bull. Seismol. Soc. Am.59, 865–908.

    Google Scholar 

  • Herrmann, H. J., andRoux, S., eds.,Statistical Models for the Fracture of Disordered Media (Elsevier, Amsterdam 1990).

    Google Scholar 

  • Herrmann, H. J.,Fractures. InFractals and Disordered Systems (eds. Bunde, A., and Havlin, S.) (Springer-Verlag, 1991) pp. 175–205.

  • Hirabayashi, T., andIto, K. (1990),Multifractal Analysis of Earthquakes, Pure and Appl. Geophys., this issue.

  • Hirata, T. (1987),Omori's Power Law Aftershock Sequences of Microfracturing in Rock Fracturing Experiment, J. Geophys. Res.92, 6215–6221.

    Google Scholar 

  • Hirata, T., andImoto, M. (1991),Multifractal Analysis of Spatial Distribution of Microearthquakes in the Kanto Region, Geophys. J. Int.107, 155–162.

    Google Scholar 

  • Hirata, T., Satoh, T., andIto, K. (1987),Fractal Structure of Spatial Distribution of Microfracturing in Rock, Geophys. J. R. Astr. Soc.67, 697–717.

    Google Scholar 

  • Hwa, T., andKardar, M. (1989),Fractals and Self-organized Criticality in Dissipative Dynamics, PhysicaD38, 198–202.

    Google Scholar 

  • Ishimoto, M., andIida, K. (1939),Observations sur les seisms energistré par le microseismograph construite dernierment (I), Bull. Earthq. Res. Inst.17, 443–478 (in Japanese).

    Google Scholar 

  • Ito, K., andMatsuzaki, M. (1990),Earthquakes as Self-organized Critical Phenomena, J. Geophys. Res.95, 6853–6860.

    Google Scholar 

  • Jensen, M. H., Kadanoff, K., Libchaber, A., Procaccia, I., andStavans, J. (1985),Global Universality at the Onset of Chaos: Results of a Forced Rayleigh-Benard Experiment, Phys. Rev. Lett.55, 2798–2801.

    Google Scholar 

  • Kagan, Y. Y. (1981),Spatial Distribution of Earthquakes: The Three-point Moment Function, Geophys. J. R. Astr. Soc.67, 697–717.

    Google Scholar 

  • Kagan, Y. Y., andKnopoff, L. (1980),Spatial Distribution of Earthquakes: The Two-point Correlation Function, Geophys. J. R. Astr. Soc.62, 697–717.

    Google Scholar 

  • Kanamori, H., andAnderson, D. L. (1975),Theoretical Basis of Some Empirical Relations in Seismology, Bull. Seismol. Soc. Am.65, 1073–1095.

    Google Scholar 

  • King, G. (1983),The Accommodation of Large Strains in the Upper Lithosphere of the Earth and Other Solids by Self-similar Fault Systems: The Geometrical Origin of b-values, Pure and Appl. Geophys.121, 761–815.

    Google Scholar 

  • Kinzel, W.,Directed percolation. InPercolation Structures and Processes (ed. Weil, R.) (Adam Hilger, Bristol 1983) pp. 425–445.

    Google Scholar 

  • Leath, P. L. (1976),Cluster Size and Boundary Distribution near Percolation Threshold, Phys. Rev.B14, 5046–5055.

    Google Scholar 

  • Liggett, T. M.,Interacting Particle Systems (Springer-Verlag, New York 1985).

    Google Scholar 

  • Lomnitz-Adler, J., andLemus-Diaz, P. (1989),A Stochastic Model for Fracture Growth on a Heterogeneous Seismic Fault, Geophys. J. Int.99, 183–194.

    Google Scholar 

  • Lorenz, E. N. (1963),Deterministic Nonperiodic Flow, J. Atmos. Sci.20, 130–141.

    Article  Google Scholar 

  • Louis, E., andGuinea, F. (1989),Fracture as a Growth Process, PhysicaD38, 235–241.

    Google Scholar 

  • Mandelbrot, B. B. (1967),How Long is the Coast of Britain? Statistical Self-similarity and Fractional Dimension, Science155, 636–638.

    Google Scholar 

  • Mandelbrot, B. B.,Fractals: Form, Chance and Dimension (Freeman, San Francisco 1977).

    Google Scholar 

  • Mandelbrot, B. B.,The Fractal Geometry of Nature (Freeman, San Francisco 1982).

    Google Scholar 

  • Matsuzaki, M., andTakayasu, H. (1991),Fractal Features of Earthquake Phenomenon and a Simple Mechanical Model, J. Geophys. Res.96, 19,925–19,931.

    Google Scholar 

  • May, R. M. (1976),Simple Mathematical Models with Very Complicated Dynamics, Nature261, 459–467.

    Google Scholar 

  • McCauley, J. L. (1990),Introduction to Multifractals in Dynamical Systems Theory and Fully Developed Fluid Turbulence, Phys. Reports189, 225–226.

    Google Scholar 

  • Meakin, P. (1991),Models for Material Failure and Deformation, Science252, 226–234.

    Google Scholar 

  • Meneveau, C., andSreenivasan, K. R.,The multifractal spectrum of the dissipation field in turbulent flows. InPhysics of Chaos and Systems Far from Equilibrium (eds. Van, Minh-Duong, and Nicolis, B.) (North-Holland, Amsterdam 1987).

    Google Scholar 

  • Mori, Y., Kaneko, K., andWadati, M. (1991),Fracture Dynamics by Quenching. I. Crack Patterns, J. Phys. Soc. Japan,60, 1591–1599.

    Google Scholar 

  • Naftaly, U., Schwartz, M., Aharony, A., andStauffer, D. (1991),The Granular Fracture Model for Rock Fragmentation, J. Phys.A24, L1175-L1184.

    Google Scholar 

  • Nakanishi, H. (1991),Statistical Properties of the Cellular-automaton Model for Earthquakes, Phys. Rev.A43, 6613–6621.

    Google Scholar 

  • Nicolis, G., andPrigogine, I.,Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations (Wiley, New York 1977).

    Google Scholar 

  • Ogata, Y. (1988),Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes, J. Am. Stat. Assoc83 (401), 9–27.

    Google Scholar 

  • Ogata, Y. (1989),Statistical Model for Standard Seismicity and Detection of Anomalies by Residual Analysis, Tectonophys.169, 159–174.

    Google Scholar 

  • Omori, F. (1894),On Aftershocks of Earthquakes, J. Coll. Sci. Imp. Univ. Tokyo7, 111–200.

    Google Scholar 

  • Otsuka, M. (1971),A Simulation of Earthquakes Occurrences, Part 1: A Mechanical Model, Jishin24, 13–25 (in Japanese).

    Google Scholar 

  • Otsuka, M. (1972),A Chain-reaction-type Source Model as a Tool to Interpret the Magnitude-frequency Relation of Earthquakes, J. Phys. Earth20, 35–45.

    Google Scholar 

  • Pasad, R. R., Meneveau, C., andSreenivasan, K. R. (1988),Multifractal Nature of the Dissipation Field of Passive Scalars in Fully Developed Turbulent Flows, Phys. Rev. Lett.61, 74–77.

    Google Scholar 

  • Peebles, P. J. E.,Large-scale Structure of the Universe (Princeton Univ. Press, Princeton 1980).

    Google Scholar 

  • Pfeuty, P., andTuolouse, G.,Introduction to the Renormalization Group and Critical Phenomena (John Wiley and Sons, 1977).

  • Pietronero, L., andTosatti, E. eds.,Fractals in Physics (North-Holland, Amsterdam 1986).

    Google Scholar 

  • Rikitake, T. (1958),Oscillations of a System of Disk Dynamos, Proc. Cambridge Philos. Soc.54, 89–105.

    Google Scholar 

  • Sadvskiy, M. A., Golubeva, T. V., Pisarenko, V. F., andShnirman, M. G. (1984),Characteristic Dimensions of Rock and Hierarchical Properties of Seismicity, Izv. Acad. Sci. USSR, Earth Phys. Engl. Transl.,20, 87–96.

    Google Scholar 

  • Selinger, R. L. B., Wang, Z.-G., Gelbart, W. M., andBen-Shaul, A. (1991),Statistical-thermodynamic Approach to Fracture, Phys. Rev.A43, 4396–4400.

    Google Scholar 

  • Skjertorp, A. T., andMeakin, P. (1988),Fracture in Microsphere Monolayers Studied by Experiment and Computer Simulation, Nature,335, 424–426.

    Google Scholar 

  • Smalley, R. F., Turcotte, D. L., andSolla, S. A. (1985),A Renormalization Group Approach to the Stick-slip Behavior of Faults, J. Geophys. Res.90, 1894–1900.

    Google Scholar 

  • Sornette, A., Davy, Ph., andSornette, D. (1990),Structuration of the Lithosphere in Plate Tectonics as a Self-organized Critical Phenomenon, J. Geophys. Res.95, 17,353–17,361.

    Google Scholar 

  • Sornette, A., andSornette, D. (1989),Self-organized Criticality and Earthquakes, Europhys. Lett.9, 197–202.

    Google Scholar 

  • Stanley, H. G.,Introduction to Phase Transitions and Critical Phenomena (Clarendon Press, Oxford 1971).

    Google Scholar 

  • Stanley, H. E., andMeakin, P. (1988),Multifractal Phenomena in Physics and Chemistry, Nature335, 405–409.

    Google Scholar 

  • Stauffer, D.,Introduction to Percolation Theory (Taylor and Francis, London 1985).

    Google Scholar 

  • Stuketee, J. A. (1958),Some Geophysical Applications of the Elasticity Theory of Dislocations, Can. J. Phys.36, 1168–1198.

    Google Scholar 

  • Takayasu, H.,Pattern formation of dendritic fractals in fracture and electric breakdown. InFractals in Physics (eds. Pietronero, L., and Tosatti, E.) (North-Holland, Amsterdam 1986) pp. 181–184.

    Google Scholar 

  • Takayasu, H., Nishikawa, I., andTasaki, H. (1988),Power-law Distribution of Aggregation Systems with Injection, Phys. Rev.A37, 3110–3117.

    Google Scholar 

  • Termonia, Y., andMeakin, P. (1986),Formation of Fractal Cracks in Kinetic Fracture Model, Nature320, 429–431.

    Google Scholar 

  • Terada, T.,Scientific Papers by Torahiko Terada, Vols. 1–6 (Iwanami Syoten, Tokyo 1931).

    Google Scholar 

  • Thom, R.,Structural Stability and Morphogenesis, (Benjamin, Reading, MA 1975).

    Google Scholar 

  • Thompson, D'arcy W.,On Growth and Form, (Cambridge Univ. Press, Cambridge 1917).

    Google Scholar 

  • Totsuji, H., andKihara, T. (1969),The Correlation Function for the Distribution of Galaxies, Publ. Astron. Soc. Japan21, 221–229.

    Google Scholar 

  • Turcotte, D. L. (1986),A Fractal Model for Crustal Deformation, Tectonophys.132, 361–369.

    Google Scholar 

  • Utsu, T. (1969),Aftershocks and Earthquake Statistics (I), J. Fac. Sci., Hokkaido Univ., ser. VII,3, 129–195.

    Google Scholar 

  • Utsu, T. (1970),, J. Fac. Sci., Hokkaido Univ., ser. VII,3, 197–266.

    Google Scholar 

  • Wiesenfeld, K., Tang, G., andBak, P. (1989),A Physicist's Sandbox, J. Statist. Phys.54, 1441–1458.

    Google Scholar 

  • Yamashina, K. (1978),Induced Earthquakes in the Izu-Peninsula by the Izu-Hanto-Oki Earthquake of 1974, Japan, Tectonophys.51, 139–154.

    Google Scholar 

  • Zeeman, E. C.,Catastrophe Theory (Addison-Wesley, Reading, MA 1977).

    Google Scholar 

  • Zhang, Yi-C. (1989).Scaling Theory of Self-organized Criticality, Phys. Rev. Lett.,63, 470–473.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, K. Towards a new view of earthquake phenomena. PAGEOPH 138, 531–548 (1992). https://doi.org/10.1007/BF00876337

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00876337

Key words

Navigation