Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wieckowski E and Whiteside TL. Human tumor-derived vs dendritic cell-derived exosomes have distinct biologic roles and molecular profiles. Immunologic Research, 2006, 36(1–3):247–54. DOI: 10.1385/ir:36:1:247 93

    Article  Google Scholar 

  2. Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, and Whiteside TL. Fas ligand—positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clinical Cancer Research, 2005,11(3):1010–20. DOI: 10.1158/1078-0432.1010.11.3 93, 102, 103

    Google Scholar 

  3. Whiteside TL. Immune responses to malignancies. Journal of Allergy and Clinical Immunology, 2010, 125(2):S272-S83. DOI: 10.1016/j.jaci.2009.09.045 93

    Article  Google Scholar 

  4. Schuler P, Saze Z, Hong CÀ, Muller L, Gillespie D, Cheng D, et al. Human CD 4+ CD 39+ regulatory T cells produce adenosine upon co-expression of surface CD 73 or contact with CD 73+ exosomes or CD 73+ cells. Clinical & Experimental Immunology, 2014, 177(2):531–43. DOI: 10.1111/cei.12354 93

    Article  Google Scholar 

  5. Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, and Whiteside TL. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. The Journal of Immunology, 2009, 183(6):3720–30. DOI: 10.4049/jimmunol.0900970 93, 100

    Article  Google Scholar 

  6. Gabrielsson S and Scheynius A, Eds. Exosomes in immunity and cancer—friends or foes? Seminars in Cancer Biology, 2014. DOI: 10.1016/j.semcancer.2014.06.007 93

    Google Scholar 

  7. Whiteside TL. Immune Modulation of T-cell andNK (Natural Killer) Cell Activities by TEXs (Tumour-derived Exosomes). Portland Press Ltd., 2013. DOI: 10.1042/bst20120265 93, 100

    Google Scholar 

  8. Bobrie A and Théry C. Exosomes and Communication Between Tumours and the Immune System: Are All Exosomes Equal? Portland Press Ltd., 2013. DOI: 10.1042/bst20120245 93

    Google Scholar 

  9. Whiteside TL. Tumor-derived exosomes and their role in cancer progression. Advances in Clinical Chemistry, Elsevier, 2016, 74:103–41. 93, 94

    Article  Google Scholar 

  10. Martins VR, Dias MS, and Hainaut P. Tumor-cell-derived microvesicles as carriers of molecular information in cancer. Current Opinion in Oncology, 2013, 25(1):66–75. DOI:10.1097/cco.0b013e32835b7c81 93

    Article  Google Scholar 

  11. Boyiadzis M and Whiteside TL. Information transfer by exosomes: A new frontier in hematologic malignancies. Blood Reviews, 2015, 29(5):281–90. DOI:10.1016/j.blre.2015.01.004 93

    Article  Google Scholar 

  12. Record M, Subra C, Silvente-Poirot S, and Poirot M. Exosomes as intercellular signalo- somes and pharmacological effectors. Biochemical Pharmacology, 2011, 81(10):1171–82. DOI: 10.1016/j.bcp.2011.02.011 93

    Article  Google Scholar 

  13. Azmi AS, Bao B, and Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: A comprehensive review. Cancer Metastasis Reviews, 2013, 32(3-4):623–42. DOI: 10.1007/s10555-013-9441-9 94

    Article  Google Scholar 

  14. Zomer A, Maynard C, Verweij FJ, and Kamermans A, Schäfer R, Beerling E, et al. In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell, 2015, 161(5):1046–57. DOI: 10.1016/j.cell.2015.04.042 94

    Article  Google Scholar 

  15. Rana S, Malinowska K, and Zöller M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia, New York, 2013, 15(3):281–95. DOI:10.1593/neo.122010 94

    Article  Google Scholar 

  16. Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 2014, 25(4):501–15. DOI: 10.1016/j.ccr.2014.03.007 94, 95

    Article  Google Scholar 

  17. McCready J, Sims JD, Chan D, and Jay DG. Secretion of extracellular hsp90a via exosomes increases cancer cell motility: A role for plasminogen activation. BMC Cancer, 2010, 10(1):294. DOI: 10.1186/1471-2407-10-294 95

    Article  Google Scholar 

  18. Skovierovâ H, Okajcekovâ T, Strnâdel J, Vidomanovâ E, and Halasovâ E. Molecular regulation of epithelial-to-mesenchymal transition in tumorigenesis. International Journal of Molecular Medicine, 2018, 41(3):1187–200. DOI: 10.3892/ijmm.2017.3320 95

    Google Scholar 

  19. Conigliaro A and Cicchini C. Exosome-mediated signaling in epithelial to mesenchymal transition and tumor progression. Journal of Clinical Medicine, 2019, 8(1):26. DOI:10.3390/jcm8010026 95

    Article  Google Scholar 

  20. Mannavola F, Pezzicoli G, and Tucci M. DLC-1 down-regulation via exosomal miR- 106b-3p exchange promotes CRC metastasis by the epithelial-to-mesenchymal transition. Clinical Science, 2020, 134(8):955–9. DOI: 10.1042/cs20200181 95

    Article  Google Scholar 

  21. Zhang D and Fan D. Multidrug resistance in gastric cancer: Recent research advances and ongoing therapeutic challenges. Expert Review of Anticancer Therapy, 2007, 7(10):1369–78. DOI: 10.1586/14737140.7.10.1369 96

    Article  Google Scholar 

  22. Wang M, Qiu R, Yu S, Xu X, Li G, Gu R, et al. Paclitaxel-resistant gastric cancer MGC- 803 cells promote epithelial-to-mesenchymal transition and chemoresistance in paclitaxelsensitive cells via exosomal delivery of miR-155-5p. InternationalJournal of Oncology, 2019, 54(1):326–38. DOI: 10.3892/ijo.2018.4601 96

    Google Scholar 

  23. Lamouille S, Xu J, and Derynck R. Molecular mechanisms of epithelial—mesenchymal transition. Nature Reviews Molecular Cell Biology, 2014, 15(3):178–96. DOI:10.1038/nrm3758 96

    Article  Google Scholar 

  24. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell, 2012, 151(7):1542-56. DOI: 10.1016/j.cell.2012.11.024 96

    Article  Google Scholar 

  25. Lin R, Wang S, and Zhao RC. Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Molecular and Cellular Biochemistry, 2013, 383(1–2):13–20. DOI: 10.1007/s11010-013-1746-z 96

    Article  Google Scholar 

  26. Menck K, Klemm F, Gross JC, Pukrop T, Wenzel D, and Binder C. Induction and transport of Wnt 5a during macrophage-induced malignant invasion is mediated by two types of extracellular vesicles. Oncotarget, 2013, 4(11):2057. DOI: 10.18632/oncotarget.1336 96

    Article  MathSciNet  Google Scholar 

  27. Ekstrom EJ, Bergenfelz C, von Bülow V, Serifler F, Carlemalm E, Jonsson G, et al. WNT5A induces release of exosomes containing pro-angiogenic and immunosuppressive factors from malignant melanoma cells. Molecular Cancer, 2014, 13(1):88. DOI:10.1186/1476-4598-13-88 96

    Article  Google Scholar 

  28. Wang H, Wei H, Wang J, Li L, Chen A, and Li Z. MicroRNA-181d-5p-containing exosomes derived from CAFs promote EMT by regulating CDX2/HOXA5 in breast cancer. Molecular Therapy-Nucleic Acids, 2020, 19:654–67. DOI: 10.1016/j.omtn.2019.11.024 96, 97

    Article  Google Scholar 

  29. Rajabi M and Mousa SA. The role of angiogenesis in cancer treatment. Biomedicines, 2017, 5(2):34. DOI: 10.3390/biomedicines5020034 97

    Article  Google Scholar 

  30. Gluszko A, Mirza SM, Piszczatowska K, Kantor I, Struga M, and Szczepanski MJ. The role of tumor-derived exosomes in tumor angiogenesis and tumor progression. Current Issues in Pharmacy and Medical Sciences, 2019, 1(ahead-of-print). DOI: 10.2478/cipms-2019-0034 97

    Google Scholar 

  31. Ludwig N and Whiteside TL. Potential roles of tumor-derived exosomes in angiogenesis. Expert Opinion on Therapeutic Targets, 2018, 22(5):409–17. DOI:10.1080/14728222.2018.1464141 97

    Article  Google Scholar 

  32. Giusti I, Delle Monache S, Di Francesco M, Sanità P, D’Ascenzo S, Gravina GL, et al. From glioblastoma to endothelial cells through extracellular vesicles: Messages for angiogenesis. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 2016, 37(9):12743–53. DOI: 10.1007/s13277-016-5165-0 97

    Article  Google Scholar 

  33. SkogJ, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology, 2008, 10(12):1470–6. DOI: 10.1038/ncb1800 97

    Article  Google Scholar 

  34. Deng T, Zhang H, Yang H, Wang H, Bai M, Sun W, et al. Exosome miR-155 derived from gastric carcinoma promotes angiogenesis by targeting the c-MYB/VEGF axis of endothelial cells. Molecular Therapy Nucleic Acids, 2020, 19:1449–59. DOI:10.1016/j.omtn.2020.01.024 97

    Article  Google Scholar 

  35. Svensson KJ, Kucharzewska P, Christianson HC, Skold S, Lofstedt T, Johansson MC, et al. Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2—mediated heparin-binding EGF signaling in endothelial cells. Proc. of the National Academy of Sciences, 2011, 108(32):13147–52. DOI: 10.1073/pnas.1104261108 97

    Article  Google Scholar 

  36. Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Molecular & Cellular Proteomics, 2010, 9(6):1085-99. DOI:10.1074/mcp.m900381-mcp200 97

    Article  Google Scholar 

  37. Tadokoro H, Umezu T, Ohyashiki K, Hirano T, and Ohyashiki JH. Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. Journal of Biological Chemistry, 2013, 288(48):34343–51. DOI: 10.1074/jbc.m113.480822 97

    Article  Google Scholar 

  38. Vella LJ. The emerging role of exosomes in epithelial—mesenchymal-transition in cancer. Frontiers in Oncology, 2014, 4:361. DOI: 10.3389/fonc.2014.00361 97

    Article  Google Scholar 

  39. Lang HL, Hu GW, Chen Y, Liu Y, Tu W, Lu YM, et al. Glioma cells promote angiogenesis through the release of exosomes containing long non-coding RNA POU3F3. European Review for Medical and Pharmacological Sciences, 2017, 21(5):959–72. 97

    Google Scholar 

  40. Ludwig N, Yerneni SS, Azambuja JH, Gillespie DG, Menshikova EV, Jackson EK, et al. Tumor-derived exosomes promote angiogenesis via adenosine A 2B receptor signaling. Angiogenesis, 2020, pp. 1–12. DOI: 10.1007/s10456-020-09728- 97, 98

    Google Scholar 

  41. Mashouri L, Yousefi H, Aref AR, mohammad Ahadi A, Molaei F, and Alahari SK. Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Molecular Cancer, 2019, 18(1):75. DOI: 10.1186/s12943-019-0991-5 95, 98

    Article  Google Scholar 

  42. Raimondo S, Pucci M, Alessandro R, and Fontana S. Extracellular vesicles and tumorimmune escape: Biological functions and clinical perspectives. International Journal of Molecular Sciences, 2020, 21(7):2286. DOI: 10.3390/ijms21072286 99

    Article  Google Scholar 

  43. Yu S, Liu C, Su K, Wang J, Liu Y, Zhang L, et al. Tumor exosomes inhibit differentiation of bone marrow dendritic cells. The Journal of Immunology, 2007, 178(11):6867–75. DOI:10.4049/jimmunol.178.11.6867 99

    Article  Google Scholar 

  44. Ning Y, Shen K, Wu Q, Sun X, Bai Y, Xie Y, et al. Tumor exosomes block dendritic cells maturation to decrease the T cell immune response. Immunology Letters, 2018,199:36–43. DOI: 10.1016/j.imlet.2018.05.002 99

    Article  Google Scholar 

  45. Togashi Y, Shitara K, and Nishikawa H. Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. Nature Reviews Clinical Oncology, 2019, 16(6):356–71. DOI: 10.1038/s41571-019-0175-7 100

    Article  Google Scholar 

  46. Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, and Whiteside TL. Tumor- derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PloS One, 2010, 5(7):e11469. DOI: 10.1371/journal.pone.0011469 100, 102, 103

    Article  Google Scholar 

  47. Wada J, Onishi H, Suzuki H, Yamasaki A, Nagai S, Morisaki T, et al. Surface-bound TGF-beta1 on effusion-derived exosomes participates in maintenance of number and suppressive function of regulatory T-cells in malignant effusions. Anticancer Research, 2010, 30(9):3747–57. 100

    Google Scholar 

  48. Yamada N, Kuranaga Y, Kumazaki M, Shinohara H, Taniguchi K, and Akao Y. Colorectal cancer cell-derived extracellular vesicles induce phenotypic alteration of T cells into tumor-growth supporting cells with transforming growth factor-β1-mediated suppression. Oncotarget, 2016, 7(19):27033–43. DOI: 10.18632/oncotarget.7041 100

    Article  Google Scholar 

  49. Walker PR, Saas P, and Dietrich PY. Role of Fas ligand (CD95L) in immune escape: The tumor cell strikes back. Journal of Immunology, 1997, 158(10):4521–4. 100

    Google Scholar 

  50. Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, et al. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. The Journal of Experimental Medicine, 2002, 195(10):1303–16. DOI: 10.1084/jem.20011624 100

    Article  Google Scholar 

  51. Huber V, Fais S, Iero M, Lugini L, Canese P, Squarcina P, et al. Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: Role in immune escape. Gastroenterology, 2005,128(7):1796–804. DOI: 10.1053/j.gastro.2005.03.045 100

    Article  Google Scholar 

  52. Monleon I, Martinez-Lorenzo MJ, Monteagudo L, Lasierra P, Taulés M, Iturralde M, et al. Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. Journal of Immunology, 2001, 167(12):6736–44. DOI: 10.4049/jimmunol.167.12.6736 100

    Article  Google Scholar 

  53. Mazzeo C, Calvo V, Alonso R, Mérida I, and Izquierdo M. Protein kinase D1/2 is involved in the maturation of multivesicular bodies and secretion of exosomes in T and B lymphocytes. Cell Death and Differentiation, 2016, 23(1):99–109. DOI:10.1038/cdd.2015.72 100

    Article  Google Scholar 

  54. Daassi D, Mahoney KM, and Freeman GJ. The importance of exosomal PDL1 in tumour immune evasion. Nature Reviews Immunology, 2020, 20(4):209–15. DOI:10.1038/s41577-019-0264-y 101

    Article  Google Scholar 

  55. Harada K, DongX, EstrellaJS, Correa AM, Xu Y, Hofstetter WL, etal. Tumor-associated macrophage infiltration is highly associated with PD-L1 expression in gastric adenocarcinoma. Gastric Cancer: OfficialJournal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association, 2018,21(1):31–40. DOI: 10.1007/s10120-017-0760-3 101

    Article  Google Scholar 

  56. Li L, Cao B, Liang X, Lu S, Luo H, Wang Z, et al. Microenvironmental oxygen pressure orchestrates an anti- and pro-tumoral y S T cell equilibrium via tumor-derived exosomes. Oncogene, 2019, 38(15):2830–43. DOI: 10.1038/s41388-018-0627-z 101

    Article  Google Scholar 

  57. Liu J, Fan L, Yu H, Zhang J, He Y, Feng D, et al. Endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and up-regulate programmed death ligand 1 expression in macrophages. Hepatology, 2019, 70(1):241–58. DOI: 10.1002/hep.30607 101

    Google Scholar 

  58. Xie F, Xu M, Lu J, Mao L, and Wang S. The role of exosomal PD-L1 in tumor progression and immunotherapy. Molecular Cancer, 2019, 18(1):146. DOI: 10.1186/s12943-019-1074-3 101

    Article  Google Scholar 

  59. Cheng L, Liu J, Liu Q, Liu Y, Fan L, Wang F, et al. Exosomes from melatonin treated hepatocellularcarcinoma cells alter the immunosupression status through STAT3 pathway in macrophages. InternationalJournal of Biological Sciences, 2017, 13(6):723–34. DOI:10.7150/ijbs.19642 101

    Article  Google Scholar 

  60. Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, et al. Breast-cancer- secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nature Cell Biology, 2015, 17(2):183–94. DOI: 10.1038/ncb3094 101, 102, 103

    Article  Google Scholar 

  61. Neviani P, Wise PM, Murtadha M, Liu CW, Wu C-H, Jong AY, et al. Natural killer— derived exosomal miR-186 inhibits neuroblastoma growth and immune escape mechanisms. Cancer Research, 2019, 79(6):1151–64. DOI: 10.1158/0008–5472.can-18-0779 101

    Article  Google Scholar 

  62. Kalluri R. The biology and function of exosomes in cancer. The Journal of Clinical Investigation, 2016, 126(4):1208–15. DOI: 10.1172/jci81135 101

    Article  Google Scholar 

  63. Sansone P, Savini C, Kurelac I, Chang Q, Amato LB, Strillacci A, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc. of the National Academy of Sciences of the United States of America, 2017, 114(43):e9066–e75. DOI: 10.1073/pnas.1704862114 101

    Google Scholar 

  64. Yokoi A, Villar-Prados A, Oliphint PA, Zhang J, Song X, De Hoff P, et al. Mechanisms of nuclear content loading to exosomes. Science Advances, 2019, 5(11):eaax8849. DOI:10.1126/sciadv.aax8849 101

    Article  Google Scholar 

  65. Lian Q, Xu J, Yan S, Huang M, Ding H, Sun X, et al. Chemotherapy-induced intestinal inflammatory responses are mediated by exosome secretion of double-strand DNA via AIM2 inflammasome activation. Cell Research, 2017, 27(6):784–800. DOI:10.1038/cr.2017.54 101

    Article  Google Scholar 

  66. Olejarz W, Dominiak A, Zolnierzak A, Kubiak-Tomaszewska G, and Lorenc T Tumor- derived exosomes in immunosuppression and immunotherapy. Journal of Immunology Research, 2020, 2020. DOI: 10.1155/2020/6272498 99

    Google Scholar 

  67. Chow A, Zhou W, Liu L, Fong MY, Champer J, Van Haute D, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2- mediated activation ofNF-«B. Scientifics Reports, 2014, 4:5750. DOI: 10.1038/srep05750 102, 103

    Article  Google Scholar 

  68. Maji S, Chaudhary P, Akopova I, Nguyen PM, Hare RJ, Gryczynski I, et al. Exosomal annexin II promotes angiogenesis and breast cancer metastasis. Molecular Cancer Research, MCR, 2017, 15(1):93–105. DOI: 10.1158/1541-7786.mcr-16-0163 102, 103

    Article  Google Scholar 

  69. Yu S, Liu C, Su K, Wang J, Liu Y, Zhang L, et al. Tumor exosomes inhibit differentiation ofbone marrow dendritic cells. Journal of Immunology, 2007, 178(11):6867–75. DOI:10.4049/jimmunol.178.11.6867 102, 103

    Article  Google Scholar 

  70. Yang M, Chen J, Su F, Yu B, Su F, Lin L, et al. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Molecular Cancer, 2011, 10:117. DOI: 10.1186/1476-4598-10-117 102, 103

    Article  Google Scholar 

  71. Singh R, Pochampally R, Watabe K, Lu Z, and Mo Y-Y. Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Molecular Cancer, 2014,13(1):256. DOI:10.1186/1476-4598-13-256 102, 103

    Article  Google Scholar 

  72. Shen Y, Guo D, Weng L, Wang S, Ma Z, Yang Y, et al. Tumor-derived exosomes educate dendritic cells to promote tumor metastasis via HSP72/HSP105-TLR2/TLR4 pathway. Oncoimmunology, 2017, 6(12):e1362527. DOI: 10.1080/2162402x.2017.1362527 102, 103

    Article  Google Scholar 

  73. Bretz NP, Ridinger J, Rupp AK, Rimbach K, Keller S, Rupp C, et al. Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via Toll-like receptor signaling. The Journal of Biological Chemistry, 2013, 288(51):36691–702. DOI:10.1074/jbc.m113.512806 102, 103

    Article  Google Scholar 

  74. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. of the National Academy of Sciences of the United States of America, 2012, 109(31):E2110–6. DOI:10.1073/pnas.1209414109 102, 103

    Google Scholar 

  75. Bromberg J and Darnell JE, Jr. The role of STATs in transcriptional control and their impact on cellular function. Oncogene, 2000, 19(21):2468–73. DOI: 10.1038/sj.onc.1203476 102, 103

    Article  Google Scholar 

  76. Zhou M, Chen J, Zhou L, Chen W, Ding G, and Cao L. Pancreatic cancer derived exosomes regulate the expression ofTLR4 in dendritic cells via miR-203. Cellular Immunology, 2014, 292(1–2):65–9. DOI: 10.1016/j.cellimm.2014.09.004 102, 103

    Article  Google Scholar 

  77. Wu L, Zhang X, Zhang B, Shi H, Yuan X, Sun Y, et al. Exosomes derived from gastric cancer cells activate NF-kB pathway in macrophages to promote cancer progression. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 2016, 37(9):12169–80. DOI: 10.1007/s13277-016-5071-5 102, 103

    Article  Google Scholar 

  78. Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, et al. Induction of myeloid-derived suppressor cells by tumor exosomes. International Journal of Cancer, 2009, 124(11):2621- 33. DOI: 10.1002/ijc.24249 102, 103

    Article  Google Scholar 

  79. Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factorbeta-mediated suppressive activity on T lymphocytes. Cancer Research, 2006, 66(18):9290–8. DOI: 10.1158/0008-5472.can-06-1819 102, 103

    Article  Google Scholar 

  80. Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. Journal of Clinical Investigation, 2010, 120(2):457–71. DOI: 10.1172/jci40483 102, 103

    Google Scholar 

  81. Diao J, Yang X, Song X, Chen S, He Y, Wang Q, et al. Exosomal Hsp70 mediates immunosuppressive activity of the myeloid-derived suppressor cells via phosphorylation of Stat3. Medical Oncology, 2015, 32(2):453. DOI: 10.1007/s12032-014-0453-2 102, 103

    Article  Google Scholar 

  82. Kore RA and Abraham EC. Inflammatory cytokines, interleukin-1 beta and tumor necrosis factor-alpha, upregulated in glioblastoma multiforme, raise the levels of CRYAB in exosomes secreted by U373 glioma cells. Biochemical and Biophysical Research Communications, 2014, 453(3):326–31. DOI: 10.1016/j.bbrc.2014.09.068 102, 103

    Article  Google Scholar 

  83. Chen C, Luo F, Liu X, Lu L, Xu H, Yang Q, et al. NF-kB-regulated exosomal miR-155 promotes the inflammation associated with arsenite carcinogenesis. Cancer Letters, 2017, 388:21–33. DOI: 10.1016/j.canlet.2016.11.027 102, 103

    Article  Google Scholar 

  84. Kogure T, Lin WL, Yan IK, Braconi C, and Patel T. Intercellular nanovesicle-mediated microRNA transfer: A mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology, 2011, 54(4):1237–48. DOI: 10.1002/hep.24504 102, 103

    Article  Google Scholar 

  85. Umezu T, Ohyashiki K, Kuroda M, and Ohyashiki JH. Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene, 2013, 32(22):2747–55. DOI:10.1038/onc.2012.295 102, 103

    Article  Google Scholar 

  86. Ying X, Wu Q, Wu X, Zhu Q, Wang X, Jiang L, et al. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget, 2016, 7(28):43076–87. DOI: 10.18632/oncotarget.9246 102, 103

    Article  Google Scholar 

  87. Kim SB, Kim HR, Park MC, Cho S, Goughnour PC, Han D, et al. Caspase-8 controls the secretion of inflammatory lysyl-tRNA synthetase in exosomes from cancer cells. The Journal of Cell Biology, 2017, 216(7):2201–16. DOI: 10.1083/jcb.201605118 102, 103

    Article  Google Scholar 

  88. Al-Nedawi K, Meehan B, MicallefJ, Lhotak V, May L, Guha A, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nature Cell Biology, 2008, 10(5):619–24. DOI: 10.1038/ncb1725 102, 103

    Article  Google Scholar 

  89. Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, and Boyiadzis M. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica, 2011, 96(9):1302–9. DOI: 10.3324/haematol.2010.039743 102, 103

    Article  Google Scholar 

  90. Hedlund M, Nagaeva O, Kargl D, Baranov V, and Mincheva-Nilsson L. Thermal- and oxidative-stress causes enhanced release of NKG2D ligand-bearing immunosuppressive exosomes in leukemia/lymphoma T and B cells. PloS One, 2011, 6(2):e16899. DOI:10.1371/journal.pone.0016899 102, 103

    Article  Google Scholar 

  91. Khan S, Jutzy JM, Aspe JR, McGregor DW, Neidigh JW, and Wall NR. Survivin is releasedfrom cancer cells via exosomes. Apoptosis, 2011,16(1):1–12. DOI: 10.1007/s10495-010-0534-4 102,103

    Article  MathSciNet  Google Scholar 

  92. Barros FM, Carneiro F, Machado JC, and Melo SA. Exosomes and immune response in cancer: Friends or foes? Frontiers in Immunology, 2018, 9:730. DOI:10.3389/fimmu.2018.00730 102, 103

    Article  Google Scholar 

  93. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 2012, 18(6):883–91. DOI: 10.1038/nm.2753 102, 103

    Article  Google Scholar 

  94. Lazaro-Ibanez E, Sanz-Garcia A, Visakorpi T, Escobedo-Lucea C, Siljander P, Ayuso- Sacido A, et al. Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: Apoptotic bodies, microvesicles, and exosomes. The Prostate, 2014, 74(14):1379–90. DOI: 10.1002/pros.22853 102, 103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Mirzaei, H., Rahimian, N., Mirzaei, H.R., Nahand, J.S., Hamblin, M.R. (2022). Exosomes and Cancer. In: Exosomes and MicroRNAs in Biomedical Science. Synthesis Lectures on Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-79177-2_6

Download citation

Publish with us

Policies and ethics