Skip to main content

Damage Tolerance in Topologically Optimized Structures: Exploring Structural Integrity Through Worst-Case Damage Optimization

  • Conference paper
  • First Online:
Proceedings of the International Conference of Steel and Composite for Engineering Structures (ICSCES 2023)

Abstract

This paper investigates the application of topology optimization techniques to enhance damage tolerance in structural systems. The focus is on worst-case damage distribution scenarios, aiming to minimize the vulnerability of structures to localized damage. The study proposes a methodology that combines topology optimization with worst-case scenario analysis to identify optimal structural configurations. Considering cantilever beam structures under three distinct boundary conditions, with varying damage sizes, the paper identifies worst-case damage scenarios in both fully and topologically optimized structures. The results demonstrate the algorithm’s efficacy in identifying these scenarios and its adaptability to different structural shapes, boundary conditions, and damage sizes. Comparative analyses between fully and topologically optimized structures yield specific insights into the structures’ performance, equipping structural engineers and researchers focused on topology optimization with valuable information to enhance structural robustness and resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cucinotta, F., Guglielmino, E., Longo, G., Risitano, G., Santonocito, D., Sfravara, F.: Topology optimization additive manufacturing-oriented for a biomedical application. In: Cavas-Martínez, F., Eynard, B., Fernández Cañavate, F.J., Fernández-Pacheco, D.G., Morer, P., Nigrelli, V. (eds.) Advances on Mechanics, Design Engineering and Manufacturing II. LNME, pp. 184–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12346-8_18

    Chapter  Google Scholar 

  2. Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49, 1–38 (2014)

    Article  MathSciNet  Google Scholar 

  3. Lagerweij, B.: Topology Optimization for Damage Tolerance (2019)

    Google Scholar 

  4. Li, L., Zhang, G., Khandelwal, K.: Failure resistant topology optimization of structures using nonlocal elastoplastic-damage model. Struct. Multidiscip. Optim. 58, 1589–1618 (2018)

    Article  MathSciNet  Google Scholar 

  5. Jansen, M., Lombaert, G., Schevenels, M., Sigmund, O.: Topology optimization of fail-safe structures using a simplified local damage model. Struct. Multidiscip. Optim. 49, 657–666 (2014)

    Article  MathSciNet  Google Scholar 

  6. Stolpe, M.: Fail-safe truss topology optimization. Struct. Multidiscip. Optim. 60, 1605–1618 (2019)

    Article  MathSciNet  Google Scholar 

  7. Kang, Z., Liu, P., Li, M.: Topology optimization considering fracture mechanics behaviors at specified locations. Struct. Multidiscip. Optim. 55, 1847–1864 (2017)

    Article  MathSciNet  Google Scholar 

  8. Suresh, S., Lindström, S.B., Thore, C.-J., et al.: Topology optimization using a continuous-time high-cycle fatigue model. Struct. Multidiscip. Optim. 61, 1011–1025 (2020)

    Article  MathSciNet  Google Scholar 

  9. Zhao, T., Zhang, Y., Ou, Y., et al.: Fail-safe topology optimization considering fatigue. Struct. Multidiscip. Optim. 66, 132 (2023)

    Article  MathSciNet  Google Scholar 

  10. Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods, and Applications. Springer, Cham (2003)

    Google Scholar 

  11. Al Ali, M., Shimoda, M., Benaissa, B., Kobayashi, M.: Non-parametric optimization for lightweight and high heat conductive structures under convection using metaheuristic structure binary-distribution method. Appl. Therm. Eng. 121124 (2023)

    Google Scholar 

  12. Sigmund, O.: On the design of compliant mechanisms using topology optimization. J. Struct. Mech. 25, 493–524 (1997)

    Google Scholar 

  13. Bruggi, M., Duysinx, P.: Topology optimization for minimum weight with compliance and stress constraints. Struct. Multidiscip. Optim. 46, 369–384 (2012)

    Article  MathSciNet  Google Scholar 

  14. Al Ali, M., Shimoda, M., Benaissa, B., Kobayashi, M.: Concurrent multiscale hybrid topology optimization for light weight porous soft robotic hand with high cellular stiffness. In: Capozucca, R., Khatir, S., Milani, G. (eds.) ICSCES 2022, pp. 265–278. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-24041-6_22

    Chapter  Google Scholar 

  15. Ansola Loyola, R., Querin, O.M., Garaigordobil Jiménez, A., Alonso Gordoa, C.: A sequential element rejection and admission (SERA) topology optimization code written in Matlab. Struct. Multidiscip. Optim. 58, 1297–1310 (2018)

    Article  MathSciNet  Google Scholar 

  16. Rozvany, G., Querin, O., Logo, J.: Sequential element rejection and admission (SERA) method: application to multiconstraint problems. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p. 4523 (2004)

    Google Scholar 

  17. Rozvany, G., Querin, O.: Theoretical foundations of sequential element rejections and admissions (SERA) methods and their computational implementation in topology optimization. In: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, p. 5521 (2002)

    Google Scholar 

  18. Benaissa, B., Kobayashi, M., Kinoshita, K., Takenouchi, H.: A novel approach for individual design perception based on fuzzy inference system training with YUKI algorithm. Axioms 12, 904 (2023)

    Article  Google Scholar 

  19. Khatir, A., Capozucca, R., Magagnini, E., Khatir, S., Bettucci, E.: Structural health monitoring for RC beam based on RBF neural network using experimental modal analysis. In: Capozucca, R., Khatir, S., Milani, G. (eds.) ICSCES 2022, vol. 317, pp. 82–92. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-24041-6_7

    Chapter  Google Scholar 

  20. Amoura, N., Benaissa, B., Al Ali, M., Khatir, S.: Deep neural network and YUKI algorithm for inner damage characterization based on elastic boundary displacement. In: Capozucca, R., Khatir, S., Milani, G. (eds.) ICSCES 2022, vol. 317, pp. 220–223. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-24041-6_18

    Chapter  Google Scholar 

  21. Khatir, A., Capozucca, R., Khatir, S., Magagnini, E.: Vibration-based crack prediction on a beam model using hybrid butterfly optimization algorithm with artificial neural network. Front. Struct. Civ. Eng. 16(8), 976–989 (2022). https://doi.org/10.1007/s11709-022-0840-2

    Article  Google Scholar 

  22. Achouri, F., Khatir, A., Smahi, Z., Capozucca, R., Ouled Brahim, A.: Structural health monitoring of beam model based on swarm intelligence-based algorithms and neural networks employing FRF. J. Braz. Soc. Mech. Sci. Eng. 45(12), 621 (2023). https://doi.org/10.1007/s40430-023-04525-y

    Article  Google Scholar 

  23. Khatir, A., Capozucca, R., Khatir, S., et al.: A new hybrid PSO-YUKI for double cracks identification in CFRP cantilever beam. Compos. Struct. 311, 116803 (2023). https://doi.org/10.1016/j.compstruct.2023.116803

    Article  Google Scholar 

  24. Irfan Shirazi, M., Khatir, S., Benaissa, B., et al.: Damage assessment in laminated composite plates using modal Strain Energy and YUKI-ANN algorithm. Compos. Struct. 303, 116272 (2023). https://doi.org/10.1016/j.compstruct.2022.116272

  25. Benaissa, B., Hocine, N.A., Khatir, S., et al.: YUKI algorithm and POD-RBF for elastostatic and dynamic crack identification. J. Comput. Sci. 55, 101451 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahim Benaissa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benaissa, B., Al Ali, M., Kobayashi, M., Cuong-Le, T., Khatir, S. (2024). Damage Tolerance in Topologically Optimized Structures: Exploring Structural Integrity Through Worst-Case Damage Optimization. In: Benaissa, B., Capozucca, R., Khatir, S., Milani, G. (eds) Proceedings of the International Conference of Steel and Composite for Engineering Structures. ICSCES 2023. Lecture Notes in Civil Engineering, vol 486. Springer, Cham. https://doi.org/10.1007/978-3-031-57224-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57224-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57223-4

  • Online ISBN: 978-3-031-57224-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics