Skip to main content

Treatment of ATTR Amyloidosis: From Stabilizers to Gene Editing

  • Chapter
  • First Online:
Cardiac Amyloidosis

Abstract

Advances in noninvasive diagnosis, coupled with the development of effective treatments, have shifted transthyretin amyloidosis (ATTR) from a rare and untreatable disease to a relatively prevalent condition. Transthyretin (TTR) is a tetrameric protein synthesized primarily by the liver. TTR can misfold into pathogenic ATTR amyloid fibrils that deposit in the nerves and heart, causing a progressive and debilitating polyneuropathy (PN) and life-threatening cardiomyopathy (CM). Therapeutic strategies include stabilization of the circulating TTR tetramer or reduction of TTR synthesis. TTR stabilizers have become the first ever treatment to improve survival in ATTR-CM and have been recommended in guidelines from the International Societies of Cardiology worldwide. The emergence of novel gene silencing and gene editing therapies has rapidly expanded the armamentarium of treatments available for ATTR amyloidosis. Small interfering RNA (siRNA) or antisense oligonucleotide (ASO) drugs are highly effective at disrupting the complementary mRNA and inhibiting TTR synthesis. Novel in vivo CRISPR-Cas9 gene editing therapy, transported by a lipid nanoparticle-mediated delivery system, has the potential to achieve near-complete and permanent knockdown of both wild-type and variant TTR expression after a single intravenous administration and prevent subsequent formation of pathogenic ATTR amyloid fibrils. Targeting TTR production has resulted in tremendous improvements in patient outcomes without evidence of any serious adverse clinical consequences in the short to medium term of depletion of circulating TTR. However, important questions remain including whether combining these agents (i.e., gene silencers with TTR stabilizer) could augment their therapeutic efficacy. A wide horizon of possibility is unfolding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelly J, Colon W, Lai Z, Lashuel H, McCulloch J, McCutchen S, et al. Transthyretin quaternary and tertiary structural changes facilitate misassembly into amyloid. In: Advances in protein chemistry. Elsevier; 1997. p. 161–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0065323308603216.

    Google Scholar 

  2. Porcari A, Fontana M, Gillmore JD. Transthyretin cardiac amyloidosis. Cardiovasc Res. 2023;118(18):3517–35. https://doi.org/10.1093/cvr/cvac119.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao L, Buxbaum JN, Reixach N. Age-related oxidative modifications of transthyretin modulate its amyloidogenicity. Biochemistry. 2013;52(11):1913–26.

    Article  CAS  PubMed  Google Scholar 

  4. Mangione PP, Porcari R, Gillmore JD, Pucci P, Monti M, Porcari M, et al. Proteolytic cleavage of Ser52Pro variant transthyretin triggers its amyloid fibrillogenesis. Proc Natl Acad Sci U S A. 2014;111(4):1539–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Emdin M, Aimo A, Rapezzi C, Fontana M, Perfetto F, Seferović PM, et al. Treatment of cardiac transthyretin amyloidosis: an update. Eur Heart J. 2019;40(45):3699–706.

    Article  CAS  PubMed  Google Scholar 

  6. Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018;379(11):1007–16.

    Article  CAS  PubMed  Google Scholar 

  7. Berk JL, Suhr OB, Obici L, Sekijima Y, Zeldenrust SR, Yamashita T, et al. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA. 2013;310(24):2658–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  9. Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):22–31.

    Article  CAS  PubMed  Google Scholar 

  10. Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med. 2021;385(6):493–502.

    Article  CAS  PubMed  Google Scholar 

  11. Bulawa CE, Connelly S, Devit M, Wang L, Weigel C, Fleming JA, et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc Natl Acad Sci U S A. 2012;109(24):9629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Merlini G, Planté-Bordeneuve V, Judge DP, Schmidt H, Obici L, Perlini S, et al. Effects of tafamidis on transthyretin stabilization and clinical outcomes in patients with non-Val30Met transthyretin amyloidosis. J Cardiovasc Transl Res. 2013;6(6):1011–20.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rapezzi C, Kristen AV, Gundapaneni B, Sultan MB, Hanna M. Benefits of tafamidis in patients with advanced transthyretin amyloid cardiomyopathy. Eur Heart J. 2020;41(Suppl. 2):ehaa946.2115.

    Article  Google Scholar 

  14. Elliott P, Drachman BM, Gottlieb SS, Hoffman JE, Hummel SL, Lenihan DJ, et al. Long-term survival with tafamidis in patients with transthyretin amyloid cardiomyopathy. Circ Heart Fail. 2022;15(1):e008193.

    Article  CAS  PubMed  Google Scholar 

  15. Coelho T, Maia LF, Martins da Silva A, Waddington Cruz M, Plante-Bordeneuve V, Lozeron P, et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology. 2012;79(8):785–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lozeron P, Théaudin M, Mincheva Z, Ducot B, Lacroix C, Adams D. Effect on disability and safety of Tafamidis in late onset of Met30 transthyretin familial amyloid polyneuropathy. Eur J Neurol. 2013;20(12):1539–45.

    Article  CAS  PubMed  Google Scholar 

  17. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–726.

    Article  CAS  PubMed  Google Scholar 

  18. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145(18):e895–1032.

    PubMed  Google Scholar 

  19. Quarta CC, Fontana M, Damy T, Catini J, Simoneau D, Mercuri M, et al. Changing paradigm in the treatment of amyloidosis: from disease-modifying drugs to anti-fibril therapy. Front Cardiovasc Med. 2022;9:1073503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yadav JD, Othee H, Chan KA, Man DC, Belliveau PP, Towle J. Transthyretin amyloid cardiomyopathy-current and future therapies. Ann Pharmacother. 2021;55(12):1502–14.

    Article  CAS  PubMed  Google Scholar 

  21. Gillmore JD, Garcia-Pavia P, Grogan M, Hanna MA, Heitner SB, Jacoby D, et al. Abstract 14214: ATTRibute-CM: a randomized, double-blind, placebo-controlled, multi-center, global phase 3 study of AG10 in patients with transthyretin amyloid cardiomyopathy (ATTR-CM). Circulation. 2019;140(Suppl. 1):A14214.

    Google Scholar 

  22. Cannata’ A, Merlo M, Artico J, Gentile P, Camparini L, Cristallini J, et al. Cardiovascular aging. J Cardiovasc Med. 2018;19(10):517–26. Available from: http://europepmc.org/abstract/med/30024423

    Article  Google Scholar 

  23. Porcari A, Merlo M, Rapezzi C, Sinagra G. Transthyretin amyloid cardiomyopathy: an uncharted territory awaiting discovery. Eur J Intern Med. 2020;82:7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18(6):421–46.

    Article  CAS  PubMed  Google Scholar 

  25. Urits I, Swanson D, Swett MC, Patel A, Berardino K, Amgalan A, et al. A review of Patisiran (ONPATTRO®) for the treatment of polyneuropathy in people with hereditary transthyretin amyloidosis. Neurol Ther. 2020;9(2):301–15.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ioannou A, Fontana M, Gillmore JD. RNA Targeting and gene editing strategies for transthyretin amyloidosis. BioDrugs. 2023;37(2):127–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Coelho T, Adams D, Silva A, Lozeron P, Hawkins PN, Mant T, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med. 2013;369(9):819–29.

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt HH, Wixner J, Planté-Bordeneuve V, Muñoz-Beamud F, Lladó L, Gillmore JD, et al. Patisiran treatment in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy after liver transplantation. Am J Transplant. 2022;22(6):1646–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Suhr OB, Coelho T, Buades J, Pouget J, Conceicao I, Berk J, et al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet J Rare Dis. 2015;10(1):109. Available from: http://www.ojrd.com/content/10/1/109

    Article  PubMed  PubMed Central  Google Scholar 

  30. González-Duarte A, Berk JL, Quan D, Mauermann ML, Schmidt HH, Polydefkis M, et al. Analysis of autonomic outcomes in APOLLO, a phase III trial of the RNAi therapeutic patisiran in patients with hereditary transthyretin-mediated amyloidosis. J Neurol. 2020;267(3):703–12.

    Article  PubMed  Google Scholar 

  31. Solomon SD, Adams D, Kristen A, Grogan M, González-Duarte A, Maurer MS, et al. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. Circulation. 2019;139(4):431–43. https://doi.org/10.1161/CIRCULATIONAHA.118.035831.

    Article  CAS  PubMed  Google Scholar 

  32. Fontana M, Martinez-Naharro A, Chacko L, Rowczenio D, Gilbertson JA, Whelan CJ, et al. Reduction in CMR derived extracellular volume with patisiran indicates cardiac amyloid regression. JACC Cardiovasc Imaging. 2021;14(1):189–99.

    Article  PubMed  Google Scholar 

  33. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010;23(4):351–69.

    Article  PubMed  Google Scholar 

  34. Nieminen MS, Brutsaert D, Dickstein K, Drexler H, Follath F, Harjola VP, et al. EuroHeart Failure Survey II (EHFS II): a survey on hospitalized acute heart failure patients: description of population. Eur Heart J. 2006;27(22):2725–36.

    Article  PubMed  Google Scholar 

  35. Zimmermann TS, Karsten V, Chan A, Chiesa J, Boyce M, Bettencourt BR, et al. Clinical proof of concept for a novel hepatocyte-targeting GalNAc-siRNA conjugate. Mol Ther. 2017;25(1):71–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Judge DP, Kristen AV, Grogan M, Maurer MS, Falk RH, Hanna M, et al. Phase 3 multicenter study of revusiran in patients with hereditary transthyretin-mediated (hATTR) amyloidosis with cardiomyopathy (ENDEAVOUR). Cardiovasc Drugs Ther. 2020;34(3):357–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Habtemariam BA, Karsten V, Attarwala H, Goel V, Melch M, Clausen VA, et al. Single-dose pharmacokinetics and pharmacodynamics of transthyretin targeting N-acetylgalactosamine-small interfering ribonucleic acid conjugate, vutrisiran, in healthy subjects. Clin Pharmacol Ther. 2021;109(2):372–82.

    Article  CAS  PubMed  Google Scholar 

  38. Adams D, Tournev IL, Taylor MS, Coelho T, Planté-Bordeneuve V, Berk JL, et al. Efficacy and safety of vutrisiran for patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: a randomized clinical trial. Amyloid. 2023;30(1):18–26. https://doi.org/10.1080/13506129.2022.2091985.

    Article  CAS  Google Scholar 

  39. Ackermann EJ, Guo S, Benson MD, Booten S, Freier S, Hughes SG, et al. Suppressing transthyretin production in mice, monkeys and humans using 2nd-Generation antisense oligonucleotides. Amyloid Int J Exp Clin Investig Off J Int Soc Amyloidosis. 2016;23(3):148–57.

    CAS  Google Scholar 

  40. Brannagan TH, Coelho T, Wang AK, Polydefkis MJ, Dyck PJ, Berk JL, et al. Long-term efficacy and safety of inotersen for hereditary transthyretin amyloidosis: NEURO-TTR open-label extension 3-year update. J Neurol. 2022;269(12):6416–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tanowitz M, Hettrick L, Revenko A, Kinberger GA, Prakash TP, Seth PP. Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes. Nucleic Acids Res. 2017;45(21):12388–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Prakash TP, Yu J, Migawa MT, Kinberger GA, Wan WB, Østergaard ME, et al. Comprehensive structure-activity relationship of triantennary N-acetylgalactosamine conjugated antisense oligonucleotides for targeted delivery to hepatocytes. J Med Chem. 2016;59(6):2718–33.

    Article  CAS  PubMed  Google Scholar 

  43. Shemesh CS, Yu RZ, Gaus HJ, Greenlee S, Post N, Schmidt K, et al. Elucidation of the biotransformation pathways of a Galnac3-conjugated antisense oligonucleotide in rats and monkeys. Mol Ther Nucleic Acids. 2016;5(5):e319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Viney NJ, Guo S, Tai LJ, Baker BF, Aghajan M, Jung SW, et al. Ligand conjugated antisense oligonucleotide for the treatment of transthyretin amyloidosis: preclinical and phase 1 data. ESC Hear Fail. 2021;8(1):652–61.

    Article  Google Scholar 

  45. Coelho T, Ando Y, Benson MD, Berk JL, Waddington-Cruz M, Dyck PJ, et al. Design and rationale of the global phase 3 NEURO-TTRansform study of antisense oligonucleotide AKCEA-TTR-L(Rx) (ION-682884-CS3) in hereditary transthyretin-mediated amyloid polyneuropathy. Neurol Ther. 2021;10(1):375–89.

    Article  PubMed  PubMed Central  Google Scholar 

  46. AstraZeneca. Press release. Eplontersen met co-primary and secondary endpoints in interim analysis of the NEURO-TTRansform Phase III trial for hereditary transthyretin-mediated amyloid polyneuropathy (ATTRv-PN) (last accessed 16 March 2023). Available from: https://www.astrazeneca.com/media-centre/press-releases/2022/eplontersen-phase-iii-trial-met-co-primary-endpoints.html.

  47. NEURO-TTRansform: A Study to Evaluate the Efficacy and Safety of Eplontersen (Formerly Known as ION-682884, IONIS- TTR-LRx and AKCEA-TTR-LRx) in Participants With Heredi- tary Transthyretin-Mediated Amyloid Polyneuropathy. ClinicalTrials.gov. https://www.clinicaltrials.gov/ct2/show/NCT04 136184. Accessed 11 Sep 2022.

  48. Ionis presents positive results from Phase 3 NEURO-TTRans- form study at International Symposium on Amyloidosis | Ionis Pharmaceuticals, Inc. https://ir.ionispharma.com/news-releases/news-release-details/ionis-presents-positive-results-phase-3-neuro-ttransform-study. Accessed 22 Dec 2022.

  49. Finn JD, Smith AR, Patel MC, Shaw L, Youniss MR, van Heteren J, et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 2018;22(9):2227–35.

    Article  CAS  PubMed  Google Scholar 

  50. https://www.acc.org/education-and-meetings/image-and-slide-gallery/media-detail?id=44bd7ca7119744aab5305f8f67fbb10c.

  51. Study to Evaluate Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of NTLA-2001 in Patients With Hereditary Transthyretin Amyloidosis With Polyneuropathy (ATTRv-PN) and Patients With Transthyretin Amyloidosis-Related Cardio- myopathy (ATTR-CM). ClinicalTrials.gov. https://www.clinicaltr ials.gov/ct2/show/NCT04601051. Accessed 19 Sep 2022.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian D. Gillmore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Porcari, A., Maurer, M.S., Gillmore, J.D. (2024). Treatment of ATTR Amyloidosis: From Stabilizers to Gene Editing. In: Emdin, M., Vergaro, G., Aimo, A., Fontana, M. (eds) Cardiac Amyloidosis. Springer, Cham. https://doi.org/10.1007/978-3-031-51757-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51757-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51756-3

  • Online ISBN: 978-3-031-51757-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics