Skip to main content

Development of Rural Landraces Through Mutation Breeding Approaches

  • Chapter
  • First Online:
Plant Mutagenesis

Abstract

Modern agricultural operations employ crop improvement methods that have paradoxically diminished the genetic diversity of crop plants. Traditional crop development processes aimed at managing biotic and abiotic stresses often employ common genes, alleles, or parent lines, rendering them more susceptible to rapid failure. Contrarily, landraces of customary agricultural plants have consistently demonstrated resilience against unfavourable climatic conditions despite being limited to marginal areas. These landraces possess a substantial genetic potential that can be harnessed in pre-breeding or other plant breeding activities. Efforts are ongoing to preserve this genetic potential through on-farm, in-situ, or ex-situ conservation. Gene introgression into new varieties from landraces has shown promise. This is achieved through genomic selection based on the phenotypic and/or genotypic screening of desired traits. Modern molecular plant breeding tools such as QTL mapping and marker-assisted selection, alongside biotechnological tools for gene pyramiding, can be employed to prepare parental lines for crosses or to directly introduce them into a desired cultivar. Mutation breeding, an emerging tool in plant breeding, has shown considerable promise. It is now used with high throughput screening and/or genomic selection to identify beneficial heritable changes at the genome level with precision and speed. Given that rural landraces are reservoirs of extensive genetic variability, tools like mutation breeding can facilitate more significant deviations among the parentage of newly developed crops. Genetic homogeneity among crops poses an inherent risk when exposed to pertinent biotic or abiotic factors, potentially leading to total crop failure. Thus, the ultimate aim of new-age plant breeding programs is strategically exploiting and utilizing landraces. This is achieved by extending plant breeding activities, and leveraging new generation technology to expedite the process with greater precision, thereby enhancing the development of rural landraces through mutation breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdellaoui RAOUDHA, Kadri KARIM, Ben Naceur M, Ben Kaab LB (2010) Genetic diversity in some Tunisian barley landraces based on RAPD markers. Pak J Bot 42(6):3775–3782

    CAS  Google Scholar 

  • Adugna A (2004) Alternate approaches in deploying genes for disease resistance in crop plants. Asian J Plant Sci 3:618–623

    Article  Google Scholar 

  • Al Khanjari S, Hammer K, Buerkert A, Röder MS (2007) Molecular diversity of Omani wheat revealed by microsatellites: II. Hexaploid landraces. Genet Resour Crop Evol 54:1407–1417

    Article  CAS  Google Scholar 

  • Anon (1943) Annual report, wheat sub-station, Gurdaspur, India, pp. 1–15

    Google Scholar 

  • Aoun M, Kolmer JA, Rouse MN, Elias EM, Breiland M, Bulbula WD, Chao S, Acevedo M (2019) Mapping of novel leaf rust and stem rust resistance genes in the Portuguese durum wheat landrace PI 192051. G3: Genes, Genomes, Genetics 9(8), pp.2535–2547

    Google Scholar 

  • Auerbach C (2013) Mutation research: problems, results and perspectives. Springer

    Google Scholar 

  • Babiker EM, Gordon TC, Chao S, Newcomb M, Rouse MN, Jin Y, Wanyera R, Acevedo M, Brown-Guedira G, Williamson S, Bonman JM (2015) Mapping resistance to the Ug99 race group of the stem rust pathogen in a spring wheat landrace. Theor Appl Genet 128:605–612

    Article  CAS  Google Scholar 

  • Barazani O, Perevolotsky A, Hadas R (2008) A problem of the rich: prioritizing local plant genetic resources for ex situ conservation in Israel. Biol Cons 141(2):596–600

    Article  Google Scholar 

  • Bezie Y, Tilahun T, Atnaf M, Taye M (2021) The potential applications of site-directed mutagenesis for crop improvement: a review. J Crop Sci Biotechnol 24:229–244

    Article  CAS  Google Scholar 

  • Bjørnstad A, Demissie A, Kilian A, Kleinhofs A (1997) The distinctness and diversity of Ethiopian barleys. Theor Appl Genet 94:514–521

    Article  Google Scholar 

  • Bonilla P (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Phil Agri Scient 85:68–76

    Google Scholar 

  • Brown AH (2000) The genetic structure of crop landraces and the challenge to conserve them in situ on farms. Genes in the Field, pp 29–48

    Google Scholar 

  • Brown AHD (1978) Isozymes, plant population genetic structure and genetic conservation. Theor Appl Genet 52:145–157

    Article  CAS  Google Scholar 

  • Buckler ES IV, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5(2):107–111

    Article  CAS  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87(1):10–20

    Article  CAS  Google Scholar 

  • Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species. Hordeum Vulgare. Genetics 172(1):557–567

    Article  CAS  Google Scholar 

  • Castañeda-Álvarez NP, De Haan S, Juárez H, Khoury CK, Achicanoy HA, Sosa CC, Bernau V, Salas A, Heider B, Simon R, Maxted N (2015) Ex situ conservation priorities for the wild relatives of potato (Solanum L. section Petota). PLoS One 10(4):e0122599

    Google Scholar 

  • CBD (2010) Global strategy for plant conservation. Secretariat of the Convention on Biological Diversity, Montreal. https://www.cbd.int/gspc/

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    Article  CAS  Google Scholar 

  • Daba SD, Horsley R, Brueggeman R, Chao S, Mohammadi M (2019) Genome-wide association studies and candidate gene identification for leaf scald and net blotch in barley (Hordeum vulgare L.). Plant Disease 103(5):880–889

    Google Scholar 

  • De Leon TB, Linscombe S, Subudhi PK (2016) Molecular dissection of seedling salinity tolerance in rice (Oryza sativa L.) using a high-density GBS-based SNP linkage map. Rice. 9:52. Integrative Adv Rice Re

    Google Scholar 

  • Debnath S, Seth D, Pramanik S, Adhikari S, Mondal P, Sherpa D, Sen D, Mukherjee D, Mukerjee N (2022) A comprehensive review and meta-analysis of recent advances in biotechnology for plant virus research and significant accomplishments in human health and the pharmaceutical industry. Biotechnol Genetic Eng Rev, 1–33

    Google Scholar 

  • Dempewolf H, Hodgins KA, Rummell SE, Ellstrand NC, Rieseberg LH (2012) Reproductive isolation during domestication. Plant Cell 24(7):2710–2717

    Article  CAS  Google Scholar 

  • Dhillon BS, Dua RP, Brahmi P, Bisht IS (2004) On-farm conservation of plant genetic resources for food and agriculture. Curr Sci 87(5):557–559

    Google Scholar 

  • Drummond DA, Wilke CO (2008) Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134(2):341–352

    Article  CAS  Google Scholar 

  • Dudley N (ed) (2008) Guidelines for applying protected area management categories. Iucn

    Google Scholar 

  • Dwivedi SL, Ceccarelli S, Blair MW, Upadhyaya HD, Are AK, Ortiz R (2016) Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci 21(1):31–42

    Article  CAS  Google Scholar 

  • Fan Y, Shabala S, Ma Y, Xu R, Zhou M (2015) Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genomics 16(1):1–11

    Article  Google Scholar 

  • Feng J, Wang M, See DR, Chao S, Zheng Y, Chen X (2018) Characterization of novel gene Yr79 and four additional quantitative trait loci for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103. Phytopathology 108(6):737–747

    Article  CAS  Google Scholar 

  • Flint-Garcia SA (2013) Genetics and consequences of crop domestication. J Agric Food Chem 61(35):8267–8276

    Article  CAS  Google Scholar 

  • Frankel OH, Brown AH, Burdon JJ (1995) The conservation of plant biodiversity. Cambridge University Press

    Google Scholar 

  • Gaikpa DS, Kessel B, Presterl T, Ouzunova M, Galiano-Carneiro AL, Mayer M, Melchinger AE, Schön CC, Miedaner T (2021) Exploiting genetic diversity in two European maize landraces for improving Gibberella ear rot resistance using genomic tools. Theor Appl Genet 134(3):793–805

    Article  CAS  Google Scholar 

  • Goates BJ (1986) Common bunt and dwarf bunt. Chapter 2. In: Wilcoxson RD, Saaru EE (Eds), Bunt and smut diseases of wheat: concepts and methods of disease management, Mexico, D.F.: CIMMYT

    Google Scholar 

  • Goddard R, de Vos S, Steed A, Muhammed A, Thomas K, Griggs D, Ridout C, Nicholson P (2019) Mapping of agronomic traits, disease resistance and malting quality in a wide cross of two-row barley cultivars. PLoS ONE 14(7):e0219042

    Article  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485

    Article  CAS  Google Scholar 

  • Gustafsson Å (1947) Mutations in agricultural plants. Hereditas 33(1–2):1–100

    Google Scholar 

  • Hagenblad J, Oliveira HR, Forsberg NE, Leino MW (2016) Geographical distribution of genetic diversity in Secale landrace and wild accessions. BMC Plant Biol 16(1):1–20

    Article  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hall AJ, Richards RA (2013) Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crop Res 143:18–33

    Article  Google Scholar 

  • Hallajian MT (2016) Mutation breeding and drought stress tolerance in plants. Drought Stress Tolerance in Plants, Vol 2: Molecular and Genetic Perspectives, pp 359–383

    Google Scholar 

  • Hare RA (1997) Characterization and inheritance of adult plant stem rust resistance in durum wheat. Crop Sci 37(4):1094–1098

    Article  Google Scholar 

  • Harlan JR (1975) Our Vanishing Genetic Resources: Modern varieties replace ancient populations that have provided genetic variability for plant breeding programs. Science 188(4188):618–621

    Article  Google Scholar 

  • Hasan N, Choudhary S, Naaz N, Sharma N, Laskar RA (2021) Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J Genetic Eng Biotechnol 19(1):1–26

    Article  CAS  Google Scholar 

  • Hawkes JG (1983) The diversity of crop plants. Harvard University Press

    Book  Google Scholar 

  • Heywood VH, Dulloo ME (2005) In situ conservation of wild plant species: a critical global review of good practices

    Google Scholar 

  • Hoang GT, Gantet P, Nguyen KH, Phung NTP, Ha LT, Nguyen TT, Lebrun M, Courtois B, Pham XH (2019) Genome-wide association mapping of leaf mass traits in a Vietnamese rice landrace panel. PLoS ONE 14(7):e0219274

    Article  CAS  Google Scholar 

  • Hsam SLK, Zeller FJ (2002) Breeding for powdery mildew resistance in common wheat (Triticum aestivum L.). The powdery mildews: a comprehensive treatise, pp 219–238

    Google Scholar 

  • Hua L, Wang DR, Tan L, Fu Y, Liu F, Xiao L, Zhu Z, Fu Q, Sun X, Gu P, Cai H (2015) LABA1, a domestication gene associated with long, barbed awns in wild rice. Plant Cell 27(7):1875–1888

    Article  CAS  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961–967

    Article  CAS  Google Scholar 

  • Huber K, Buerstmayr H (2006) Development of methods for bunt resistance breeding for organic farming. na

    Google Scholar 

  • Hummer KE, Hancock JF (2015) Vavilovian centers of plant diversity: implications and impacts. HortScience 50(6):780–783

    Article  CAS  Google Scholar 

  • Hurni S, Scheuermann D, Krattinger SG, Kessel B, Wicker T, Herren G, Fitze MN, Breen J, Presterl T, Ouzunova M, Keller B (2015) The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc Natl Acad Sci 112(28):8780–8785

    Article  CAS  Google Scholar 

  • Jaradat AA (2013) Wheat landraces: a mini review. Emirates J Food Agric, 20–29

    Google Scholar 

  • Jarvis A, Lane A, Hijmans RJ (2008) The effect of climate change on crop wild relatives. Agr Ecosyst Environ 126(1–2):13–23

    Article  Google Scholar 

  • Jovovic Z, Kratovalieva S (2015) Global strategies for sustainable use of agricultural genetic and indigenous traditional knowledge. Plant genetic resources and traditional knowledge for food security, pp 39–72

    Google Scholar 

  • Jovović Z, Dolijanović Ž, Kovačević D, Velimirović A, Biberdžić M (2012) The productive traits of different potato genotypes in mountainous region of Montenegro. Genetika 44(2):389–397

    Article  Google Scholar 

  • Jovović Z, Stešević D, Meglič V, Dolničar P (2013) Old potato varieties in Montenegro. University of Montenegro, Biotechnical faculty Podgorica

    Google Scholar 

  • Khan AR, Goldringer I, Thomas M (2020) Management practices and breeding history of varieties strongly determine the fine genetic structure of crop populations: a case study based on European wheat populations. Sustainability 12(2):613

    Article  Google Scholar 

  • Kharkwal MC (1996) Accomplishments of mutation breeding in crop improvement in India

    Google Scholar 

  • Kolmer JA, Garvin DF, Hayden M, Spielmeyer W (2018) Adult plant leaf rust resistance derived from the wheat landrace cultivar Americano 44d is conditioned by interaction of three QTL. Euphytica 214:1–11

    Article  CAS  Google Scholar 

  • Kovács G (2006) The possible use of” founder effect” to produce locally adapted cereal” varieties. In: Workshop on Cereal crop diversity: Implications for production and products (p 68)

    Google Scholar 

  • Kumar A, Dixit S, Ram T, Yadaw RB, Mishra KK, Mandal NP (2014) Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. J Exp Bot 65(21):6265–6278

    Article  CAS  Google Scholar 

  • Laido G, Panio G, Marone D, Russo MA, Ficco DB, Giovanniello V, Cattivelli L, Steffenson B, De Vita P, Mastrangelo AM (2015) Identification of new resistance loci to African stem rust race TTKSK in tetraploid wheats based on linkage and genome-wide association mapping. Front Plant Sci 6:1033

    Article  Google Scholar 

  • Lin Y, Yi X, Tang S, Chen W, Wu F, Yang X, Jiang X, Shi H, Ma J, Chen G, Chen G (2019) Dissection of phenotypic and genetic variation of drought-related traits in diverse Chinese wheat landraces. The Plant Genome 12(3):190025

    Article  CAS  Google Scholar 

  • Lu P, Guo L, Wang Z, Li B, Li J, Li Y, Qiu D, Shi W, Yang L, Wang N, Guo G (2020) A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat Commun 11(1):680

    Article  CAS  Google Scholar 

  • Maluszynski M, Nichterlein K, Van Zanten L, Ahloowalia BS (2000) Officially released mutant varieties-the FAO/IAEA Database

    Google Scholar 

  • Mamo BE, Smith KP, Brueggeman RS, Steffenson BJ (2015) Genetic characterization of resistance to wheat stem rust race TTKSK in landrace and wild barley accessions identifies the rpg4/Rpg5 locus. Phytopathology 105(1):99–109

    Article  CAS  Google Scholar 

  • Mangini G, Margiotta B, Marcotuli I, Signorile MA, Gadaleta A, Blanco A (2017) Genetic diversity and phenetic analysis in wheat (Triticum turgidum subsp. durum and Triticum aestivum subsp. aestivum) landraces based on SNP markers. Genet Resour Crop Evol 64:1269–1280

    Article  CAS  Google Scholar 

  • Martin JH, Leonard WH (1967) Principles of field crop production. Macmillan Co.: New York

    Google Scholar 

  • Maxted N, Kell SP (2009) Establishment of a global network for the in situ conservation of crop wild relatives: status and needs. FAO commission on genetic resources for food and agriculture, Rome, Italy, 266

    Google Scholar 

  • Mazzucotelli E, Sciara G, Mastrangelo AM, Desiderio F, Xu SS, Faris J, Hayden MJ, Tricker PJ, Ozkan H, Echenique V, Steffenson BJ (2020) The Global Durum Wheat Panel (GDP): an international platform to identify and exchange beneficial alleles. Front Plant Sci 11:569905

    Article  Google Scholar 

  • McIntosh RA (1998) Catalogue of gene symbols for wheat. In Proc. 9th international wheat genetics symposium, pp 1–235. University Extension Press, Univ. Saskatchewan

    Google Scholar 

  • Miglani GS (2017) Genome editing in crop improvement: present scenario and future prospects. J Crop Improv 31(4):453–559

    Article  CAS  Google Scholar 

  • Miller AJ, Gross BL (2011) From forest to field: perennial fruit crop domestication. Am J Bot 98(9):1389–1414

    Article  Google Scholar 

  • Montilla-Bascón G, Rispail N, Sánchez-Martín J, Rubiales D, Mur LA, Langdon T, Howarth CJ, Prats E (2015) Genome-wide association study for crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) resistance in an oat (Avena sativa) collection of commercial varieties and landraces. Front Plant Sci 6:103

    Google Scholar 

  • Moore G (2015) Strategic pre-breeding for wheat improvement. Nature Plants 1(3):1–3

    Article  Google Scholar 

  • Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong X (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47(12):1494–1498

    Article  CAS  Google Scholar 

  • Morrell PL, Toleno DM, Lundy KE, Clegg MT (2005) Low levels of linkage disequilibrium in wild barley (Hordeum vulgar e ssp. spontaneum) despite high rates of self-fertilization. Proc Nat Acad Sci 102(7):2442–2447

    Google Scholar 

  • Muleta KT, Rouse MN, Rynearson S, Chen X, Buta BG, Pumphrey MO (2017) Characterization of molecular diversity and genome-wide mapping of loci associated with resistance to stripe rust and stem rust in Ethiopian bread wheat accessions. BMC Plant Biol 17(1):1–20

    Article  Google Scholar 

  • Murphy KM, Reeves PG, Jones SS (2008) Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica 163:381–390

    Article  Google Scholar 

  • Mussgnug JH (2017) Nuclear transformation and toolbox development. Chlamydomonas Molec Genet Physiol, pp 27–58

    Google Scholar 

  • Mzid R, Chibani F, Ayed RB, Hanana M, Breidi J, Kabalan R, El-Hajj S, Machlab H, Rebai A, Chalak L (2016) Genetic diversity in barley landraces (Hordeum vulgare L. subsp. vulgare) originated from Crescent Fertile region as detected by seed storage proteins. J Genet 95:733–739

    Article  Google Scholar 

  • Nabhan GP (1990) Wild Phaseolus ecogeography in the Sierra Madre Occidental, Mexico: areographic techniques for targeting and conserving species diversity. IBPGR

    Google Scholar 

  • Negri V (2003) Landraces in central Italy: where and why they are conserved and perspectives for their on-farm conservation. Genet Resour Crop Evol 50:871–885

    Article  Google Scholar 

  • Newton AC, Akar T, Baresel JP, Bebeli PJ, Bettencourt E, Bladenopoulos KV, Czembor JH, Fasoula DA, Katsiotis A, Koutis K, Koutsika-Sotiriou M (2011) Cereal landraces for sustainable agriculture. Sustain Agric 2:147–186

    Google Scholar 

  • Nilsson-Ehle H (1948) The future possibilities of Swedish barley breeding. The future possibilities of Swedish barley breeding

    Google Scholar 

  • Novakazi F, Afanasenko O, Anisimova A, Platz GJ, Snowdon R, Kovaleva O, Zubkovich A, Ordon F (2019) Genetic analysis of a worldwide barley collection for resistance to net form of net blotch disease (Pyrenophora teres f. teres). Theor Appl Genet 132:2633–2650

    Article  Google Scholar 

  • Ohno M (2019) Spontaneous de novo germline mutations in humans and mice: rates, spectra, causes and consequences. Genes Genet Syst 94(1):13–22

    Article  CAS  Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16

    Article  CAS  Google Scholar 

  • Olm MR (2019) Strain-resolved metagenomic analysis of the premature infant microbiome and other natural microbial communities. University of California, Berkeley

    Google Scholar 

  • Olsen KM, Wendel JF (2013a) A bountiful harvest: genomic insights into crop domestication phenotypes. Annu Rev Plant Biol 64:47–70

    Article  CAS  Google Scholar 

  • Olsen KM, Wendel JF (2013b) Crop plants as models for understanding plant adaptation and diversification. Front Plant Sci 4:290

    Article  Google Scholar 

  • Pasam RK, Sharma R, Walther A, Özkan H, Graner A, Kilian B (2014) Genetic diversity and population structure in a legacy collection of spring barley landraces adapted to a wide range of climates. PLoS ONE 9(12):e116164

    Article  Google Scholar 

  • Paull JG, Nable RO, Rathjen AJ (1992) Physiological and genetic control of the tolerance of wheat to high concentrations of boron and implications for plant breeding. Plant Soil 146:251–260

    Article  CAS  Google Scholar 

  • Peusha H, Lebedeva T, Priilinn O, Enno T (2002) Genetic analysis of durable powdery mildew resistance in a common wheat line. Hereditas 136(3):201–206

    Article  Google Scholar 

  • Piechota U, Czembor PC, Słowacki P, Czembor JH (2019) Identifying a novel powdery mildew resistance gene in a barley landrace from Morocco. J Appl Genet 60:243–254

    Article  CAS  Google Scholar 

  • Puram VRR, Ontoy J, Subudhi PK (2018) Identification of QTLs for salt tolerance traits and prebreeding lines with enhanced salt tolerance in an introgression line population of rice. Plant Mol Biol Report 36:695–709

    Article  CAS  Google Scholar 

  • Raggi L, Barata AM, Heinonen M, Iriondo Alegría JM, Kell S, Maxted N, Meierhofer H, Prohens J, Ralli P, Negri V (2020) In situ plant genetic resources in Europe: Landraces

    Google Scholar 

  • Rai AK, Kumar SP, Gupta SK, Gautam N, Singh NK, Sharma TR (2011) Functional complementation of rice blast resistance gene Pi-k h (Pi54) conferring resistance to diverse strains of Magnaporthe oryzae. J Plant Biochem Biotechnol 20:55–65

    Article  CAS  Google Scholar 

  • Randhawa M, Bansal U, Valárik M, Klocová B, Doležel J, Bariana H (2014) Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theor Appl Genet 127:317–324

    Article  CAS  Google Scholar 

  • Rapoport LA (1948) Alkylation of the gene molecule. Doklady Acad Sci. USSR 59:1183–1186

    CAS  Google Scholar 

  • Reinert S, Kortz A, Léon J, Naz AA (2016) Genome-wide association mapping in the global diversity set reveals new QTL controlling root system and related shoot variation in barley. Front Plant Sci 7:1061

    Article  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37(10):1141–1146

    Article  CAS  Google Scholar 

  • Rivandi J, Miyazaki J, Hrmova M, Pallotta M, Tester M, Collins N (2011) A SOS3 homologue maps to HvNax4, a barley locus controlling an environmentally sensitive Na+ exclusion trait. J Exp Bot 62(3):1201–1216

    Article  CAS  Google Scholar 

  • Roelfs AP (1988) Resistance to leaf and stem rust of wheat. In: Simmonds NW, Rajaram S (Eds), Breeding strategies for resistance to the rusts of wheat, México CIMMYT

    Google Scholar 

  • Rubiales D, Niks RE (2000) Combination of mechanisms of resistance to rust fungi as a strategy to increase durability. Options Mediterraneennes 40:333–339

    Google Scholar 

  • Saccomanno A, Matny O, Marone D, Laidò G, Petruzzino G, Mazzucotelli E, Desiderio F, Blanco A, Gadaleta A, Pecchioni N, De Vita P (2018) Genetic mapping of loci for resistance to stem rust in a tetraploid wheat collection. Int J Mol Sci 19(12):3907

    Article  Google Scholar 

  • Salamini F, Özkan H, Brandolini A, Schäfer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet 3(6):429–441

    Article  CAS  Google Scholar 

  • Sapehin AA (1936) X-ray mutants in soft wheat. Bull Appl Bot. Genet Plant Breed II 9:3–37

    Google Scholar 

  • Saremirad A, Bihamta MR, Malihipour A, Mostafavi K, Alipour H (2021) Genome-wide association study in diverse Iranian wheat germplasms detected several putative genomic regions associated with stem rust resistance. Food Sci Nutr 9(3):1357–1374

    Article  CAS  Google Scholar 

  • Shi L, Jiang C, He Q, Habekuß A, Ordon F, Luan H, Shen H, Liu J, Feng Z, Zhang J, Yang P (2019) Bulked segregant RNA-sequencing (BSR-seq) identified a novel rare allele of eIF4E effective against multiple isolates of BaYMV/BaMMV. Theor Appl Genet 132:1777–1788

    Article  CAS  Google Scholar 

  • Shu QY (2009) Turning plant mutation breeding into a new era: molecular mutation breeding. Induced plant mutations in the genomics era, pp 425–427

    Google Scholar 

  • Silvar Casao C, Perovic D, Nussbaumer T, Spannagl M, Usadel B, Casas Cendoya AM, Igartua Arregui E, Ordon F (2013) Towards positional isolation of three quantitative trait Loci conferring resistance to powdery mildew in two Spanish barley landraces

    Google Scholar 

  • Simmonds NW (1979) Principles of crop improvement. Longman, New York, p 408

    Google Scholar 

  • Singh H, Khar A, Verma P (2021) Induced mutagenesis for genetic improvement of Allium genetic resources: a comprehensive review. Genet Resour Crop Evol 68(7):2669–2690

    Article  Google Scholar 

  • Singh RK, Singh A, Pandey CB (2014) Agro-biodiversity in rice–wheat-based agroecosystems of eastern Uttar Pradesh, India: implications for conservation and sustainable management. Int J Sust Dev World 21(1):46–59

    Article  Google Scholar 

  • Stodart BJ, Raman H, Coombes N, Mackay M (2007) Evaluating landraces of bread wheat Triticum aestivum L. for tolerance to aluminium under low pH conditions. Genet Resour Crop Evol 54:759–766

    Article  Google Scholar 

  • Sun H, Hu J, Song W, Qiu D, Cui L, Wu P, Zhang H, Liu H, Yang L, Qu Y, Li Y (2018) Pm61: a recessive gene for resistance to powdery mildew in wheat landrace Xuxusanyuehuang identified by comparative genomics analysis. Theor Appl Genet 131:2085–2097

    Article  CAS  Google Scholar 

  • Sutton T, Baumann U, Hayes J, Collins NC, Shi BJ, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318(5855):1446–1449

    Article  CAS  Google Scholar 

  • Swarup S, Cargill EJ, Crosby K, Flagel L, Kniskern J, Glenn KC (2021) Genetic diversity is indispensable for plant breeding to improve crops. Crop Sci 61(2):839–852

    Article  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277(5329):1063–1066

    Google Scholar 

  • Tehseen MM, Tonk FA, Tosun M, Amri A, Sansaloni CP, Kurtulus E, Yazbek M, Al‐Sham’aa K, Ozseven I, Safdar LB, Shehadeh A (2021) Genome‐wide association study of resistance to PstS2 and Warrior races of Puccinia striiformis f. sp. tritici (stripe rust) in bread wheat landraces. The Plant Genome 14(1):e20066

    Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327(5967):818–822

    Article  CAS  Google Scholar 

  • Thormann I, Endresen DTF, Rubio-Teso ML, Iriondo MJ, Maxted N, Parra-Quijano M (2014) Predictive characterization of crop wild relatives and landraces: technical guidelines version 1

    Google Scholar 

  • Tollenaar D (1938) Untersuchungen tiber Mutation bei Tabak: II. Eigine Kunstl ich er zeugte Chromosomen-Mutanten. Genetica 20:285–294

    Article  Google Scholar 

  • Van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, de Jesus Sanchez Gonzalez J, Ross-Ibarra J (2011) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Nat Acad Sci 108(3):1088–1092

    Google Scholar 

  • Van Leur JAG (1989) Barley pathology, cereal improvement program. Annu Rep 1988:122–130

    Google Scholar 

  • Vikram P, Sehgal D, Sharma A, Bhavani S, Gupta P, Randhawa M, Pardo N, Basandra D, Srivastava P, Singh S, Sood T (2021) Genome-wide association analysis of Mexican bread wheat landraces for resistance to yellow and stem rust. PLoS ONE 16(1):e0246015

    Article  CAS  Google Scholar 

  • Villa TCC, Maxted N, Scholten M, Ford-Lloyd B (2005) Defining and identifying crop landraces. Plant Genet Resour 3(3):373–384

    Article  Google Scholar 

  • Wang X, Yang Q, Dai Z, Wang Y, Zhang Y, Li B, Zhao W, Hao J (2019) Identification of QTLs for resistance to maize rough dwarf disease using two connected RIL populations in maize. PLoS ONE 14(12):e0226700

    Article  CAS  Google Scholar 

  • Wang Z, Li H, Zhang D, Guo L, Chen J, Chen Y, Wu Q, Xie J, Zhang Y, Sun Q, Dvorak J (2015) Genetic and physical mapping of powdery mildew resistance gene MlHLT in Chinese wheat landrace Hulutou. Theor Appl Genet 128:365–373

    Article  CAS  Google Scholar 

  • Weltzien E (1988) Evaluation of barley (Hordeum vulgare L.) landrace populations originating from different growing regions in the Near East. Plant Breeding 101(2):95–106

    Google Scholar 

  • Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet 105:890–897

    Article  CAS  Google Scholar 

  • Wood D, Lenne JM (1997) The conservation of agrobiodiversity on-farm: questioning the emerging paradigm. Biodivers Conserv 6:109–129

    Article  Google Scholar 

  • Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308(5726):1310–1314

    Article  CAS  Google Scholar 

  • Wu X, Bian Q, Gao Y, Ni X, Sun Y, Xuan Y, Cao Y, Li T (2021) Evaluation of resistance to powdery mildew and identification of resistance genes in wheat cultivars. PeerJ 9:e10425

    Article  Google Scholar 

  • Xu K, Mackill DJ (1996) A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breeding 2:219–224

    Article  CAS  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442(7103):705–708

    Article  CAS  Google Scholar 

  • Xu R, Wang J, Li C, Johnson P, Lu C, Zhou M (2012) A single locus is responsible for salinity tolerance in a Chinese landrace barley (Hordeum vulgare L.)

    Google Scholar 

  • Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, Li J (2012b) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30(1):105–111

    Article  CAS  Google Scholar 

  • Xue S, Lu M, Hu S, Xu H, Ma Y, Lu N, Bai S, Gu A, Wan H, Li S (2021) Characterization of PmHHXM, a new broad-spectrum powdery mildew resistance gene in Chinese wheat landrace Honghuaxiaomai. Plant Dis 105(8):2089–2096

    Article  CAS  Google Scholar 

  • Yadav RK, Gautam S, Palikhey E, Joshi BK, Ghimire KH, Gurung R, Adhikari AR, Pudasaini N, Dhakal R (2018) Agro-morphological diversity of Nepalese naked barley landraces. Agric Food Secur 7(1):1–12

    Article  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37(4):528–538

    Article  CAS  Google Scholar 

  • Yau SK, Ryan J (2008) Boron toxicity tolerance in crops: a viable alternative to soil amelioration. Crop Sci 48(3):854–865

    Article  CAS  Google Scholar 

  • Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139

    Article  Google Scholar 

  • Zeven AC (1999) The traditional inexplicable replacement of seed and seed ware of landraces and cultivars: a review. Euphytica 110:181–191

    Article  Google Scholar 

  • Zhang P, Lan C, Asad MA, Gebrewahid TW, Xia X, He Z, Li Z, Liu D (2019) QTL mapping of adult-plant resistance to leaf rust in the Chinese landraces Pingyuan 50/Mingxian 169 using the wheat 55K SNP array. Mol Breeding 39:1–14

    Article  Google Scholar 

  • Zhang ZJ (1995) Evidence of durable resistance in nine Chinese land races and one Italian cultivar of Triticum aestivum to Puccinia striiformis. Eur J Plant Pathol 101:405–409

    Article  Google Scholar 

  • Zhao FJ, Shewry PR (2011) Recent developments in modifying crops and agronomic practice to improve human health. Food Policy 36:S94–S101

    Article  Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33(4):408–414

    Article  CAS  Google Scholar 

  • Zong X, Yang T, Liu R, Zhu Z, Zhang H, Li L, Zhang X, He Y, Sun S, Liu Q, Li G (2019) Genomic designing for climate-smart pea. In: Genomic designing of climate-smart pulse crops, pp 265–358. Springer, Cham

    Google Scholar 

  • Zurn JD, Rouse MN, Chao S, Aoun M, Macharia G, Hiebert CW, Pretorius ZA, Bonman JM, Acevedo M (2018) Dissection of the multigenic wheat stem rust resistance present in the Montenegrin spring wheat accession PI 362698. BMC Genomics 19:1–11

    Article  Google Scholar 

  • Zwyrtková J, Šimková H, Doležel J (2021) Chromosome genomics uncovers plant genome organization and function. Biotechnol Adv 46:107659

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Debnath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pramanik, S., Debnath, S. (2024). Development of Rural Landraces Through Mutation Breeding Approaches. In: Kumar, N. (eds) Plant Mutagenesis. Sustainable Landscape Planning and Natural Resources Management. Springer, Cham. https://doi.org/10.1007/978-3-031-50729-8_13

Download citation

Publish with us

Policies and ethics