Skip to main content

Kinematics of the Native and Arthritic Knee

  • Chapter
  • First Online:
Surgical Management of Knee Arthritis
  • 99 Accesses

Abstract

In kinematics, the geometry of moving surfaces is utilized to predict motion patterns of native or prosthetic knees. The unique articular geometry of the native knee permits satisfactory function in a wide variety of activities. Contemporary artificial knees try to mimic native knee function but are unsatisfactory in activities like stair descent, deep squatting, and running. Evolution in prosthetic knee design has improved knee kinematics but this is yet to translate into significant clinical benefit. In this chapter we elaborate on the anatomy and kinematics of native and arthritic knees and evaluate the design features and kinematics of contemporary prosthetic knee designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kahlenberg CA, et al. Patient satisfaction after total knee replacement: a systematic review. HSS J. 2018;14(2):192–201.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dennis DA, et al. Femoral condylar lift-off in vivo in total knee arthroplasty. J Bone Joint Surg Br. 2001;83(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  3. Ploegmakers MJ, et al. Physical examination and in vivo kinematics in two posterior cruciate ligament retaining total knee arthroplasty designs. Knee. 2010;17(3):204–9.

    Article  CAS  PubMed  Google Scholar 

  4. Rivière C, et al. Differences in trochlear parameters between native and prosthetic kinematically or mechanically aligned knees. Orthop Traumatol Surg Res. 2018;104(2):165–70.

    Article  PubMed  Google Scholar 

  5. Hatfield GL, et al. The effect of total knee arthroplasty on knee joint kinematics and kinetics during gait. J Arthroplasty. 2011;26(2):309–18.

    Article  PubMed  Google Scholar 

  6. Smith PN, Refshauge KM, Scarvell JM. Development of the concepts of knee kinematics. Arch Phys Med Rehabil. 2003;84(12):1895–902.

    Article  PubMed  Google Scholar 

  7. d’Entremont AG, et al. Do dynamic-based MR knee kinematics methods produce the same results as static methods? Magn Reson Med. 2013;69(6):1634–44.

    Article  PubMed  Google Scholar 

  8. Freeman MA, Pinskerova V. The movement of the knee studied by magnetic resonance imaging. Clin Orthop Relat Res. 2003;(410):35–43.

    Google Scholar 

  9. Loudon JK. Biomechanics and pathomechanics of the patellofemoral joint. Int J Sports Phys Ther. 2016;11(6):820–30.

    PubMed  PubMed Central  Google Scholar 

  10. Scott CE, Nutton RW, Biant LC. Lateral compartment osteoarthritis of the knee: biomechanics and surgical management of end-stage disease. Bone Joint J. 2013;95-B(4):436–44.

    Article  CAS  PubMed  Google Scholar 

  11. Protopapadaki A, et al. Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals. Clin Biomech (Bristol, Avon). 2007;22(2):203–10.

    Article  PubMed  Google Scholar 

  12. Smith SM, et al. Tibiofemoral joint contact forces and knee kinematics during squatting. Gait Posture. 2008;27(3):376–86.

    Article  PubMed  Google Scholar 

  13. Cammarata ML, Dhaher YY. Associations between frontal plane joint stiffness and proprioceptive acuity in knee osteoarthritis. Arthritis Care Res (Hoboken). 2012;64(5):735–43.

    Article  PubMed  Google Scholar 

  14. Harman MK, et al. Wear patterns on tibial plateaus from varus and valgus osteoarthritic knees. Clin Orthop Relat Res. 1998;(352):149–158.

    Google Scholar 

  15. Favre J, et al. Baseline ambulatory knee kinematics are associated with changes in cartilage thickness in osteoarthritic patients over 5 years. J Biomech. 2016;49(9):1859–64.

    Article  PubMed  Google Scholar 

  16. Astephen JL, et al. Gait and neuromuscular pattern changes are associated with differences in knee osteoarthritis severity levels. J Biomech. 2008;41(4):868–76.

    Article  PubMed  Google Scholar 

  17. Iijima H, et al. Biomechanical characteristics of stair ambulation in patients with knee OA: a systematic review with meta-analysis toward a better definition of clinical hallmarks. Gait Posture. 2018;62:191–201.

    Article  PubMed  Google Scholar 

  18. Steultjens MP, et al. Range of joint motion and disability in patients with osteoarthritis of the knee or hip. Rheumatology (Oxford). 2000;39(9):955–61.

    Article  CAS  PubMed  Google Scholar 

  19. Akbari Shandiz M, et al. Changes in knee kinematics following total knee arthroplasty. Proc Inst Mech Eng H. 2016;230(4):265–78.

    Article  PubMed  Google Scholar 

  20. Song SJ, Park CH, Bae DK. What to know for selecting cruciate-retaining or posterior-stabilized total knee arthroplasty. Clin Orthop Surg. 2019;11(2):142–50.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Donadio J, et al. Control of paradoxical kinematics in posterior cruciate-retaining total knee arthroplasty by increasing posterior femoral offset. Knee Surg Sports Traumatol Arthrosc. 2015;23(6):1631–7.

    Article  CAS  PubMed  Google Scholar 

  22. Murakami K, et al. Kinematic analysis of stair climbing in rotating platform cruciate-retaining and posterior-stabilized mobile-bearing total knee arthroplasties. Arch Orthop Trauma Surg. 2017;137(5):701–11.

    Article  PubMed  Google Scholar 

  23. Komnik I, et al. Compromised knee internal rotation in total knee arthroplasty patients during stair climbing. PLoS One. 2018;13(10):e0205492.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Victor J, Banks S, Bellemans J. Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study. J Bone Joint Surg Br. 2005;87(5):646–55.

    Article  CAS  PubMed  Google Scholar 

  25. Harato K, et al. Midterm comparison of posterior cruciate-retaining versus -substituting total knee arthroplasty using the genesis II prosthesis. A multicenter prospective randomized clinical trial. Knee. 2008;15(3):217–21.

    Article  PubMed  Google Scholar 

  26. Broberg JS, et al. Comparison of contact kinematics in posterior-stabilized and cruciate-retaining total knee arthroplasty at long-term follow-up. J Arthroplasty. 2020;35(1):272–7.

    Article  PubMed  Google Scholar 

  27. Verra WC, et al. Retention versus sacrifice of the posterior cruciate ligament in total knee arthroplasty for treating osteoarthritis. Cochrane Database Syst Rev. 2013;(10):CD004803.

    Google Scholar 

  28. Verra WC, et al. Similar outcome after retention or sacrifice of the posterior cruciate ligament in total knee arthroplasty. Acta Orthop. 2015;86(2):195–201.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li N, et al. Posterior cruciate-retaining versus posterior stabilized total knee arthroplasty: a meta-analysis of randomized controlled trials. Knee Surg Sports Traumatol Arthrosc. 2014;22(3):556–64.

    Article  PubMed  Google Scholar 

  30. Peters CL, et al. Comparison of total knee arthroplasty with highly congruent anterior-stabilized bearings versus a cruciate-retaining design. Clin Orthop Relat Res. 2014;472(1):175–80.

    Article  PubMed  Google Scholar 

  31. Lützner J, et al. Similar stability and range of motion between cruciate-retaining and cruciate-substituting ultracongruent insert total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2015;23(6):1638–43.

    Article  PubMed  Google Scholar 

  32. Jang SW, et al. Comparison of anterior-stabilized and posterior-stabilized total knee arthroplasty in the same patients: a prospective randomized study. J Arthroplasty. 2019;34(8):1682–9.

    Article  PubMed  Google Scholar 

  33. Heyse TJ, et al. Kinematics of a bicruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2017;25(6):1784–91.

    Article  PubMed  Google Scholar 

  34. Iriuchishima T, Ryu K. Bicruciate substituting total knee arthroplasty improves stair climbing ability when compared with cruciate-retain or posterior stabilizing total knee arthroplasty. Indian J Orthop. 2019;53(5):641–5.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hansson U, et al. Mobile vs. fixed meniscal bearing in total knee replacement: a randomised radiostereometric study. Knee. 2005;12(6):414–8.

    Article  PubMed  Google Scholar 

  36. Haider H, Garvin K. Rotating platform versus fixed-bearing total knees: an in vitro study of wear. Clin Orthop Relat Res. 2008;466(11):2677–85.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Oh KJ, et al. Meta-analysis comparing outcomes of fixed-bearing and mobile-bearing prostheses in total knee arthroplasty. J Arthroplasty. 2009;24(6):873–84.

    Article  PubMed  Google Scholar 

  38. Dennis DA, et al. Mobile-bearing total knee arthroplasty: do the polyethylene bearings rotate? Clin Orthop Relat Res. 2005;440:88–95.

    Article  PubMed  Google Scholar 

  39. Ball ST, et al. Fixed versus rotating platform total knee arthroplasty: a prospective, randomized, single-blind study. J Arthroplasty. 2011;26(4):531–6.

    Article  PubMed  Google Scholar 

  40. Fantozzi S, et al. Dynamic in-vivo tibio-femoral and bearing motions in mobile bearing knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2004;12(2):144–51.

    Article  CAS  PubMed  Google Scholar 

  41. Hasegawa M, Sudo A, Uchida A. Staged bilateral mobile-bearing and fixed-bearing total knee arthroplasty in the same patients: a prospective comparison of a posterior-stabilized prosthesis. Knee Surg Sports Traumatol Arthrosc. 2009;17(3):237–43.

    Article  PubMed  Google Scholar 

  42. Kim YH, Yoon SH, Kim JS. The long-term results of simultaneous fixed-bearing and mobile-bearing total knee replacements performed in the same patient. J Bone Joint Surg Br. 2007;89(10):1317–23.

    Article  PubMed  Google Scholar 

  43. Rahman WA, Garbuz DS, Masri BA. Randomized controlled trial of radiographic and patient-assessed outcomes following fixed versus rotating platform total knee arthroplasty. J Arthroplasty. 2010;25(8):1201–8.

    Article  PubMed  Google Scholar 

  44. Woolson ST, Epstein NJ, Huddleston JI. Long-term comparison of mobile-bearing vs fixed-bearing total knee arthroplasty. J Arthroplasty. 2011;26(8):1219–23.

    Article  PubMed  Google Scholar 

  45. Moskal JT, Capps SG. Rotating-platform TKA no different from fixed-bearing TKA regarding survivorship or performance: a meta-analysis. Clin Orthop Relat Res. 2014;472(7):2185–93.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Post ZD, et al. Mobile-bearing total knee arthroplasty: better than a fixed-bearing? J Arthroplasty. 2010;25(6):998–1003.

    Article  PubMed  Google Scholar 

  47. Smith H, et al. Meta-analysis and systematic review of clinical outcomes comparing mobile bearing and fixed bearing total knee arthroplasty. J Arthroplasty. 2011;26(8):1205–13.

    Article  PubMed  Google Scholar 

  48. Murray DW, et al. A randomised controlled trial of the clinical effectiveness and cost-effectiveness of different knee prostheses: the knee arthroplasty trial (KAT). Health Technol Assess. 2014;18(19):1–235, vii–viii.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Morgan H, Battista V, Leopold SS. Constraint in primary total knee arthroplasty. J Am Acad Orthop Surg. 2005;13(8):515–24.

    Article  PubMed  Google Scholar 

  50. Sumino T, et al. Semi-constrained posterior stabilized total knee arthroplasty reproduces natural deep knee bending kinematics. BMC Musculoskelet Disord. 2020;21(1):107.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sadhwani S, Picache D, Eberle R, Shah A. Achieving progressive constrained kinematics following primary complex total knee arthroplasty: the trapezoidal femoral component box. In: Orthopaedic proceedings. 2020. The British Editorial Society of Bone & Joint Surgery.

    Google Scholar 

  52. Avino RJ, et al. Varus-valgus constraint in primary total knee arthroplasty: a short-term solution but will it last? J Arthroplasty. 2020;35(3):741–746.e2.

    Article  PubMed  Google Scholar 

  53. Cottino U, et al. Long-term results after total knee arthroplasty with contemporary rotating-hinge prostheses. J Bone Joint Surg Am. 2017;99(4):324–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niraj Kalore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jorgensen, A., Kalore, N., Scully, R., Golladay, G.J. (2023). Kinematics of the Native and Arthritic Knee. In: Deshmukh, A.J., Shabani, B.H., Waldstein, W., Oni, J.K. (eds) Surgical Management of Knee Arthritis. Springer, Cham. https://doi.org/10.1007/978-3-031-47929-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47929-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47928-1

  • Online ISBN: 978-3-031-47929-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics