Skip to main content

Pseudocapacitive Materials for Electrolytes

  • Chapter
  • First Online:
Pseudocapacitors

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 230 Accesses

Abstract

The electrolyte plays a vital role in the performance and durability of electrochemical energy devices like supercapacitors, fuel cells, and batteries. The electrolyte is usually employed as an aqueous solution but is also found in non-aqueous forms like organic solvents, including protic and aprotic ionic liquids. It is used as a gel or solid polymer electrolyte (GPE/SPE) for flexible applications. The use of pseudocapacitive materials in electrolytes serves different purposes, including mechanical stability and ionic conductivity, to improve the electrode/electrolyte interface and water retention, among others. This chapter discusses the most outstanding achievements in this field, given the prospective improvement of electrochemical energy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X. He, X. Zhang, A comprehensive review of supercapacitors: properties, electrodes, electrolytes and thermal management systems based on phase change materials. J. Energy Storage. 56, 106023 (2022)

    Article  Google Scholar 

  2. I. Voicu, H. Louahlia, H. Gualous, R. Gallay, Thermal management and forced air-cooling of supercapacitors stack. Appl. Therm. Eng. 85, 89–99 (2015)

    Article  Google Scholar 

  3. W. Fu, K. Turcheniuk, O. Naumov, R. Mysyk, F. Wang, M. Liu, D. Kim, X. Ren, A. Magasinski, M. Yu, X. Feng, Z.L. Wang, G. Yushin, Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries. Mater. Today 48, 176–197 (2021)

    Article  CAS  Google Scholar 

  4. Y. Yang, T. Zhu, L. Shen, Y. Liu, D. Zhang, B. Zheng, K. Gong, J. Zheng, X. Gong, Recent progress in the all-solid-state flexible supercapacitors. SmartMat 3, 349–383 (2022)

    Google Scholar 

  5. A. Yu, V. Chabot, J. Zhang, Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications, pp. 1–355 (2017)

    Google Scholar 

  6. G. Bahuguna, P. Ram, R.K. Sharma, R. Gupta, An organo-fluorine compound mixed electrolyte for ultrafast electric double layer supercapacitors. ChemElectroChem 5, 2767–2773 (2018)

    Article  CAS  Google Scholar 

  7. T. Lé, P. Gentile, G. Bidan, D. Aradilla, New electrolyte mixture of propylene carbonate and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide (N1114 TFSI) for high performance silicon nanowire (SiNW)-based supercapacitor applications. Electrochim. Acta 254, 368–374 (2017)

    Article  Google Scholar 

  8. R. Holze, F. Béguin, E. Frąckowiak (eds), Supercapacitors—materials, systems, and applications. J. Solid State Electrochem. 19, 1253 (2015)

    Google Scholar 

  9. G. Kaur, S.C. Sivasubramanian, A. Dalvi, Solid-state supercapacitors using ionic liquid dispersed Li+-NASICONs as electrolytes. Electrochim. Acta 434, 141311 (2022)

    Article  CAS  Google Scholar 

  10. Z. Chen, Y. Yang, Z. Ma, T. Zhu, L. Liu, J. Zheng, X. Gong, Z. Chen, Y. Yang, Z. Ma, T. Zhu, L. Liu, X. Gong, J. Zheng, All-solid-state asymmetric supercapacitors with metal selenides electrodes and ionic conductive composites electrolytes. Adv. Funct. Mater. 29, 1904182 (2019)

    Article  Google Scholar 

  11. Y. Ji, N. Liang, J. Xu, D. Zuo, D. Chen, H. Zhang, Cellulose and poly(vinyl alcohol) composite gels as separators for quasi-solid-state electric double layer capacitors. Cellulose 26, 1055–1065 (2019)

    Article  CAS  Google Scholar 

  12. N.A. Choudhury, P.W.C. Northrop, A.C. Crothers, S. Jain, V.R. Subramanian, Chitosan hydrogel-based electrode binder and electrolyte membrane for EDLCs: experimental studies and model validation. J. Appl. Electrochem. 42, 935–943 (2012)

    Article  CAS  Google Scholar 

  13. Z. Zhai, L. Zhang, T. Du, B. Ren, Y. Xu, S. Wang, J. Miao, Z. Liu, A review of carbon materials for supercapacitors. Mater. Des. 221, 111017 (2022)

    Article  CAS  Google Scholar 

  14. K. Gajewska, A. Moyseowicz, D. Minta, G. Gryglewicz, Effect of electrolyte and carbon material on the electrochemical performance of high-voltage aqueous symmetric supercapacitors. J. Mater. Sci. 58, 1721–1738 (2023)

    Article  CAS  Google Scholar 

  15. M. Pershaanaa, S. Bashir, S. Ramesh, K. Ramesh, Every bite of Supercap: a brief review on construction and enhancement of supercapacitor. J. Energy Storage. 50, 104599 (2022)

    Article  Google Scholar 

  16. L. Peng, Z. Fang, Y. Zhu, C. Yan, G. Yu, Holey 2D nanomaterials for electrochemical energy storage. Adv. Energy Mater. 8, 1702179 (2018)

    Article  Google Scholar 

  17. T. Ohba, T. Ohba, Anomalously enhanced hydration of aqueous electrolyte solution in hydrophobic carbon nanotubes to maintain stability. ChemPhysChem 15, 415–419 (2014)

    Article  CAS  Google Scholar 

  18. Z. Supiyeva, X. Pan, Q. Abbas, The critical role of nanostructured carbon pores in supercapacitors. Curr. Opin. Electrochem. 39, 101249 (2023)

    Article  CAS  Google Scholar 

  19. C. Melios, C.E. Giusca, V. Panchal, O. Kazakova, Water on graphene: review of recent progress. 2D Mater. 5, 22001 (2018)

    Google Scholar 

  20. A. Jangid, K.D. Verma, P. Sinha, K.K. Kar (ed.), Handbook of Nanocomposite Supercapacitor Materials III, vol. 6, 245 (Springer, Cham, 2021)

    Google Scholar 

  21. J. Tian, N. Cui, P. Chen, K. Guo, X. Chen, High-performance wearable supercapacitors based on PANI/N-CNT@CNT fiber with a designed hierarchical core-sheath structure. J. Mater. Chem. A. 9, 20635–20644 (2021)

    Article  CAS  Google Scholar 

  22. T. Lv, M. Liu, D. Zhu, L. Gan, T. Chen, T. Lv, M. Liu, D. Zhu, L. Gan, T. Chen, Shanghai key, nanocarbon-based materials for flexible all-solid-state supercapacitors. Adv. Mater. 30, 1705489 (2018)

    Google Scholar 

  23. H. Zhang, X. Wang, H. Ma, M. Xue, Recent progresses on applications of conducting polymers for modifying electrode of rechargeable batteries. Adv. Energy Sustain. Res. 2, 2100088 (2021)

    Article  CAS  Google Scholar 

  24. E. Dhandapani, S. Thangarasu, S. Ramesh, K. Ramesh, R. Vasudevan, N. Duraisamy, Recent development and prospective of carbonaceous material, conducting polymer and their composite electrode materials for supercapacitor—a review. J. Energy Storage. 52, 104937 (2022)

    Article  Google Scholar 

  25. J. Wang, X. Li, X. Du, J. Wang, H. Ma, X. Jing, Polypyrrole composites with carbon materials for supercapacitors. Chem. Pap. 712(71), 293–316 (2016)

    Google Scholar 

  26. L. Hao, D. Yu, Progress of conductive polypyrrole nanocomposites. Synth. Met. 290, 117138 (2022)

    Article  CAS  Google Scholar 

  27. S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye, Y. Li, J. Liu, S. Liu, W. Liu, Y. Zhao, Y. Ye, J. Liu, D. Ba, Y. Li, Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35, 2110423 (2023)

    Article  CAS  Google Scholar 

  28. Nidhi, S. Patel, R. Kumar, Effect of Al2O3 on electrical properties of polymer electrolyte for electrochemical device application Mater. Today Proc. 46, 2175–2178 (2021)

    Google Scholar 

  29. J. Wang, L. Fan, Q. Du, K. Jiao, Lithium ion transport in solid polymer electrolyte filled with alumina nanoparticles. Energy Adv. 1, 269–276 (2022)

    Google Scholar 

  30. Nidhi, S. Patel, R. Kumar, PVDF-HFP based nanocomposite polymer electrolytes for energy storage devices dispersed with various nano-fillers. AIP Conf. Proc. 2220 (2020)

    Google Scholar 

  31. T. Sathyanathan, C.P. Sugumaran, Modeling and analysis of nano composite BaTiO3 lithium polymer battery. IEEE Trans. Nanotechnol. 17, 161–168 (2018)

    Article  CAS  Google Scholar 

  32. F. Ram, P. Kaviraj, R. Pramanik, A. Krishnan, K. Shanmuganathan, A. Arockiarajan, PVDF/BaTiO3 films with nanocellulose impregnation: Investigation of structural, morphological and mechanical properties. J. Alloys Compd. 823, 153701 (2020)

    Article  Google Scholar 

  33. J. Sharma, S. Hashmi, Magnesium ion-conducting gel polymer electrolyte nanocomposites: effect of active and passive nanofillers. Polym. Compos. 40, 1295–1306 (2019)

    Article  CAS  Google Scholar 

  34. X. Hui, P. Zhang, J. Li, D. Zhao, Z. Li, Z. Zhang, C. Wang, R. Wang, L. Yin, In situ integrating highly ionic conductive LDH-Array@PVA gel electrolyte and MXene/Zn anode for dendrite-free high-performance flexible Zn–Air batteries. Adv. Energy Mater. 12, 2201393 (2022)

    Article  CAS  Google Scholar 

  35. Q. Wang, J.F. Wu, Z.Y. Yu, X. Guo, Composite polymer electrolytes reinforced by two-dimensional layer-double-hydroxide nanosheets for dendrite-free lithium batteries. Solid State Ionics 347, 115275 (2020)

    Article  CAS  Google Scholar 

  36. V. Vijayakumar, M. Ghosh, K. Asokan, S. Babu Sukumaran, S. Kurungot, J. Mindemark, D. Brandell, M. Winter, J. Ravi Nair, V. Vijayakumar, J. Mindemark, D. Brandell, M. Ghosh, K. Asokan, S.B. Sukumaran, S. Kurungot, M. Winter, J.R. Nair, 2D Layered Nanomaterials as fillers in polymer composite electrolytes for lithium batteries. Adv. Energy Mater. 13, 2203326 (2023)

    Google Scholar 

  37. X. Yu, A. Manthiram, A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater. 34, 282–300 (2021)

    Article  Google Scholar 

  38. Y. Zhang, C. Zhu, S. Bai, J. Mao, F. Cheng, Recent advances and future perspectives of PVDF-based composite polymer electrolytes for lithium metal batteries: a review. Energy Fuels (2023)

    Google Scholar 

  39. Y. Pang, Y. Zhu, F. Fang, D. Sun, S. Zheng, Advances in solid Mg-ion electrolytes for solid-state Mg batteries. J. Mater. Sci. Technol. 161, 136–149 (2023)

    Article  Google Scholar 

  40. M. Guo, C. Yuan, T. Zhang, X. Yu, M. Guo, C. Yuan, X. Yu, T. Zhang, Solid-state electrolytes for rechargeable magnesium-ion batteries: from structure to mechanism. Small 18, 2106981 (2022)

    Article  CAS  Google Scholar 

  41. M. Hu, H. Zhang, T. Hu, B. Fan, X. Wang, Z. Li, Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 49, 6666–6693 (2020)

    Article  CAS  Google Scholar 

  42. J. Feng, D. Ma, K. Ouyang, M. Yang, Y. Wang, J. Qiu, T. Chen, J. Zhao, B. Yong, Y. Xie, H. Mi, L. Sun, C. He, P. Zhang, J. Feng, D. Ma, K. Ouyang, M. Yang, Y. Wang, T. Chen, B. Yong, Y. Xie, H. Mi, L. Sun, C. He, P. Zhang, J. Qiu, Multifunctional MXene-bonded transport network embedded in polymer electrolyte enables high-rate and stable solid-state zinc metal batteries. Adv. Funct. Mater. 32, 2207909 (2022)

    Article  CAS  Google Scholar 

  43. Z. Chen, X. Li, D. Wang, Q. Yang, L. Ma, Z. Huang, G. Liang, A. Chen, Y. Guo, B. Dong, X. Huang, C. Yang, C. Zhi, Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy Environ. Sci. 14, 3492–3501 (2021)

    Article  CAS  Google Scholar 

  44. Z. Chen, W. Li, X. Yang, C. Ke, H. Chen, Q. Li, J. Guo, Y. He, Z. Guo, X. Liang, Gel polymer electrolyte with MXene to extend cycle lifespan of flexible and rechargeable Zinc-Air batteries. J. Power. Sources 523, 231020 (2022)

    Article  CAS  Google Scholar 

  45. X. Li, X. Yang, H. Xue, H. Pang, Q. Xu, Metal–organic frameworks as a platform for clean energy applications. EnergyChem. 2, 100027 (2020)

    Article  Google Scholar 

  46. Z. Zhang, Y. Huang, H. Gao, C. Li, J. Hang, P. Liu, MOF-derived multifunctional filler reinforced polymer electrolyte for solid-state lithium batteries. J. Energy Chem. 60, 259–271 (2021)

    Article  CAS  Google Scholar 

  47. X. Lu, H. Wu, D. Kong, X. Li, L. Shen, Y. Lu, Facilitating lithium-ion conduction in gel polymer electrolyte by metal-organic frameworks. ACS Mater. Lett. 2, 1435–1441 (2020)

    Article  CAS  Google Scholar 

  48. Y. Xu, R. Zhao, J. Fang, Z. Liang, L. Gao, J. Bian, J. Zhu, Y. Zhao, Metal-organic framework (MOF)-incorporated polymeric electrolyte realizing fast lithium-ion transportation with high Li+ transference number for solid-state batteries. Front. Chem. 10, 1013965 (2022)

    Article  CAS  Google Scholar 

  49. L. Jiao, J.Y.R. Seow, W.S. Skinner, Z.U. Wang, H.L. Jiang, Metal–organic frameworks: structures and functional applications. Mater. Today 27, 43–68 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noé Arjona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Díaz-Patiño, L., Contreras, L.Á., Guerra-Balcázar, M., Arjona, N. (2024). Pseudocapacitive Materials for Electrolytes. In: Gupta, R.K. (eds) Pseudocapacitors. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45430-1_6

Download citation

Publish with us

Policies and ethics