Skip to main content
Log in

Chitosan hydrogel-based electrode binder and electrolyte membrane for EDLCs: experimental studies and model validation

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Experimental studies and model validation thereof on all solid-state electrical double layer capacitors (EDLCs) comprising of a novel, cost-effective, and eco-friendly electrode binder consisting of chitosan chemical hydrogel (CCH), and a separator consisting of ionically cross-linked chitosan hydrogel membrane electrolyte (ICCSHME) are reported. The EDLCs have been assembled with black pearls carbon as electrode. The ICCSHME has been prepared by ionic cross-linking of chitosan (CS) with sodium sulfate. EDLCs comprising 40 % loading of CCH electrode binder and ICCSHME with 1 M NaOH dopant have been studied by galvanostatic chronopotentiometry. The data have been analyzed using mathematical modeling to study lifetime behavior of the EDLCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer/Plenum, New York

    Google Scholar 

  2. Winter M, Brodd RJ (2004) Chem Rev 104:4245

    Article  CAS  Google Scholar 

  3. Frackowiak E, Béguin F (2001) Carbon 39:937

    Article  CAS  Google Scholar 

  4. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) J Power Source 101:109

    Article  CAS  Google Scholar 

  5. Mayer ST, Pekala RW, Kaschmitter JL (1993) J Electrochem Soc 140:446

    Article  CAS  Google Scholar 

  6. Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, Dunn B (1998) J Non Cryst Solids 225:74

    Article  CAS  Google Scholar 

  7. Wang J, Zhang SQ, Guo YZ, Shen J, Attia SM, Zhou B, Zeng GZ, Gui YS (2001) J Electrochem Soc 148:D75

    Article  CAS  Google Scholar 

  8. Frackowiak E, Meternier K, Bertagna V, Béguin F (2000) Appl Phys Lett 77:2421

    Article  CAS  Google Scholar 

  9. Frackowiak E, Jurewicz K, Delpeux S, Béguin F (2001) J Power Sources 97–98:822

    Article  Google Scholar 

  10. Kamath KR, Park K (1993) Adv Drug Deliv Rev 11:59

    Article  CAS  Google Scholar 

  11. Panero S, Fiorenza P, Navarra MA, Romanowska J, Scrosati B (2005) J Electrochem Soc 152:A2400

    Article  CAS  Google Scholar 

  12. Choudhury NA, Shukla AK, Sampath S, Pitchumani S (2006) J Electrochem Soc 153:A614

    Article  CAS  Google Scholar 

  13. Sahu AK, Selvarani G, Pitchumani S, Sridhar P, Shukla AK, Narayanan N, Banerjee A, Chandrakumar N (2008) J Electrochem Soc 155:B686

    Article  CAS  Google Scholar 

  14. Choudhury NA, Sampath S, Shukla AK (2008) J Electrochem Soc 155:A74

    Article  CAS  Google Scholar 

  15. Choudhury NA, Sampath S, Shukla AK (2009) Energy Environ Sci 2:55

    Article  CAS  Google Scholar 

  16. Wan Y, Creber KAM, Peppley B, Bui VT (2003) Polymer 44:1057

    Article  CAS  Google Scholar 

  17. Qin C, Li H, Xiao Q, Liu Y, Zhu J, Du Y (2006) Carbohydr Polym 63:367

    Article  CAS  Google Scholar 

  18. Wan Y, Peppley B, Creber KAM, Bui VT, Halliop E (2006) J Power Sources 162:105

    Article  CAS  Google Scholar 

  19. Singh A, Narvi SS, Dutta PK, Pandey ND (2006) Bull Mater Sci 29:233

    Article  CAS  Google Scholar 

  20. Rohindra DR, Nand AV, Khurma JR (2005) Polym Bull 54:195. http://www.publish.csiro.au/?act=view_file&file_id=SP04005.pdf

  21. Cui Z, Xiang Y, Si J, Yang M, Zhang Q, Zhang T (2008) Carbohydr Polym 73:111

    Article  CAS  Google Scholar 

  22. Osifo PO, Masala A (2010) J Power Sources 195:4915

    Article  CAS  Google Scholar 

  23. Du JF, Bai Y, Chu WY, Qiao LJ (2010) J Polym Sci 48:260

    CAS  Google Scholar 

  24. Du JF, Bai Y, Chu WY, Qiao LJ (2010) J Polym Sci 48:880

    CAS  Google Scholar 

  25. Choudhury NA, Ma J, Sahai Y (2012) J Power Sources 210:358

    Article  CAS  Google Scholar 

  26. Choudhury NA, Sahai Y, Buchheit RG (2011) Electrochem Commun 13:1

    Article  CAS  Google Scholar 

  27. Choudhury NA, Ma J, Sahai Y, Buchheit RG (2011) J Power Sources 196:5817

    Article  CAS  Google Scholar 

  28. Lufrano F, Staiti P, Minutoli M (2004) J Electrochem Soc 151:A64

    Article  CAS  Google Scholar 

  29. Lufrano F, Staiti P (2004) Electrochim Acta 49:2683

    Article  CAS  Google Scholar 

  30. Diab Y, Venet P, Gualous H, Rojat G (2009) IEEE Trans Power Electron 24:510

    Article  Google Scholar 

  31. Shi L, Crow ML (2008) Power and energy society general meeting-conversion and delivery of electrical energy in the 21st century. IEEE, Pittsburgh

    Google Scholar 

  32. Nelms RM, Cahela DR, Tatarchuk BJ (2003) IEEE Trans Aerosp Electron Syst 39:430

    Article  Google Scholar 

  33. Srinivasan V, Weidner JW (1999) J Electrochem Soc 146:1650

    Article  CAS  Google Scholar 

  34. Sikha G, White RE, Popov BN (2005) J Electrochem Soc 152:A1682

    Article  CAS  Google Scholar 

  35. Verbrugge MW, Liu P (2005) J Electrochem Soc 152:D79

    Article  CAS  Google Scholar 

  36. Lin C, Popov BN, Ploehn HJ (2002) J Electrochem Soc 149:A167

    Article  CAS  Google Scholar 

  37. Subramanian VR, Devan S, White RE (2004) J Power Sources 135:361

    Article  CAS  Google Scholar 

  38. Ramadesigan V, Chen K, Burns NA, Boovaragavan V, Braatz RD, Subramanian VR (2011) J Electrochem Soc 158:A1048

    Article  CAS  Google Scholar 

  39. Zhang Q, White RE (2008) J Power Sources 179:793

    Article  CAS  Google Scholar 

  40. Stamps AT, Holland CE, White RE, Gatzke WP (2005) J Power Sources 150:229

    Article  CAS  Google Scholar 

  41. Liaw BY, Jungst RG, Nagasubramanian F, Case HL, Doughty DH (2005) J Power Sources 140:157

    Article  CAS  Google Scholar 

  42. Ma J, Choudhury NA, Sahai Y, Buchheit RG (2011) J Power Sources 196:8257

    Article  CAS  Google Scholar 

  43. M.A.P.L.E Lab (2012) http://www.maple.eece.wustl.edu. Accessed 27 July 2012

Download references

Acknowledgments

The authors are thankful for the partial financial support of this work by the National Science Foundation (CBET-0828002, CBET-1008692, CBET-1004929), the United States government, McDonnell Academy Global Energy and Environment Partnership (MAGEEP) at Washington University in St. Louis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkat R. Subramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhury, N.A., Northrop, P.W.C., Crothers, A.C. et al. Chitosan hydrogel-based electrode binder and electrolyte membrane for EDLCs: experimental studies and model validation. J Appl Electrochem 42, 935–943 (2012). https://doi.org/10.1007/s10800-012-0469-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0469-2

Keywords

Navigation